13 research outputs found

    Insights into Starch Coated Nanozero Valent Iron-Graphene Composite for Cr(VI) Removal from Aqueous Medium

    Get PDF
    Embedding nanoparticles into an inert material like graphene is a viable option since hybrid materials are more capable than those based on pure nanoparticulates for the removal of toxic pollutants. This study reports for the first time on Cr(VI) removal capacity of novel starch stabilized nanozero valent iron-graphene composite (NZVI-Gn) under different pHs, contact time, and initial concentrations. Starch coated NZVI-Gn composite was developed through borohydrate reduction method. The structure and surface of the composite were characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and point of zero charge (pHpzc). The surface area and pHpzc of NZVI-Gn composite were reported as 525 m2 g−1 and 8.5, respectively. Highest Cr(VI) removal was achieved at pH 3, whereas 67.3% was removed within first few minutes and reached its equilibrium within 20 min obeying pseudo-second-order kinetic model, suggesting chemisorption as the rate limiting process. The partitioning of Cr(VI) at equilibrium is perfectly matched with Langmuir isotherm and maximum adsorption capacity of the NZVI-Gn composite is 143.28 mg g−1. Overall, these findings indicated that NZVI-Gn composite could be utilized as an efficient and magnetically separable adsorbent for removal of Cr(VI)

    Interactions between microplastics, pharmaceuticals and personal care products: implications for vector transport

    Get PDF
    Microplastics are well known for vector transport of hydrophobic organic contaminants, and there are growing concerns regarding their potential adverse effects on ecosystems and human health. However, recent studies focussing on hydrophilic compounds, such as pharmaceuticals and personal care products (PPCPs), have shown that the compounds ability to be adsorbed onto plastic surfaces. The extensive use of PPCPs has led to their ubiquitous presence in the environment resulting in their cooccurrence with microplastics. The partitioning between plastics and PPCPs and their fate through vector transport are determined by various physicochemical characteristics and environmental conditions of specific matrices. Although the sorption capacities of microplastics for different PPCP compounds have been investigated extensively, these findings have not yet been synthesized and analyzed critically. The specific objectives of this review were to synthesize and critically assess the various factors that affect the adsorption of hydrophilic compounds such as PPCPs on microplastic surfaces and their fate and transport in the environment. The review also focuses on environmental factors such as pH, salinity, and dissolved organics, and properties of polymers and PPCP compounds, and the relationships with sorption dynamics and mechanisms. Furthermore, the ecotoxicological effects of PPCP-sorbed microplastics on biota and human health are also discussed

    The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems.

    Get PDF
    Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge. [Abstract copyright: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.

    Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential

    No full text
    International audienceCo-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals

    Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation

    No full text
    Particulate matter (PM) is a complex mixture of solid particles and liquid droplets suspended in the air with varying size, shape, and chemical composition which intensifies significant concern due to severe health effects. Based on the well-established human health effects of outdoor PM, health-based standards for outdoor air have been promoted (e.g., the National Ambient Air Quality Standards formulated by the U.S.). Due to the exchange of indoor and outdoor air, the chemical composition of indoor particulate matter is related to the sources and components of outdoor PM. However, PM in the indoor environment has the potential to exceed outdoor PM levels. Indoor PM includes particles of outdoor origin that drift indoors and particles that originate from indoor activities, which include cooking, fireplaces, smoking, fuel combustion for heating, human activities, and burning incense. Indoor PM can be enriched with inorganic and organic contaminants, including toxic heavy metals and carcinogenic volatile organic compounds. As a potential health hazard, indoor exposure to PM has received increased attention in recent years because people spend most of their time indoors. In addition, as the quantity, quality, and scope of the research have expanded, it is necessary to conduct a systematic review of indoor PM. This review discusses the sources, pathways, characteristics, health effects, and exposure mitigation of indoor PM. Practical solutions and steps to reduce exposure to indoor PM are also discussed

    Sustainable management of hazardous asbestos-containing materials: Containment, stabilization and inertization

    No full text
    Asbestos is a group of six major silicate minerals that belong to the serpentine and amphibole families, and include chrysotile, amosite, crocidolite, anthophyllite, tremolite and actinolite. Weathering and human disturbance of asbestos-containing materials (ACMs) can lead to the emission of asbestos dust, and the inhalation of respirable asbestos fibrous dust can lead to ‘mesothelioma’ cancer and other diseases, including the progressive lung disease called ‘asbestosis’. There is a considerable legacy of in-situ ACMs in the built environment, and it is not practically or economically possible to safely remove ACMs from the built environment. The aim of the review is to examine the three approaches used for the sustainable management of hazardous ACMs in the built environment: containment, stabilization, and inertization or destruction. Most of the asbestos remaining in the built environment can be contained in a physically secured form so that it does not present a significant health risk of emitting toxic airborne fibres. In settings where safe removal is not practically feasible, stabilization and encapsulation can provide a promising solution, especially in areas where ACMs are exposed to weathering or disturbance. Complete destruction and inertization of asbestos can be achieved by thermal decomposition using plasma and microwave radiation. Bioremediation and chemical treatment (e.g., ultrasound with oxalic acid) have been found to be effective in the inertization of ACMs. Technologies that achieve complete destruction of ACMs are found to be attractive because the treated products can be recycled or safely disposed of in landfills

    Not Available

    No full text
    Not AvailableGlobal climate change has resulted in changes to the earth's geological, ecological, and biological ecosystems, which pose a severe threat to the existence of human civilization and sustenance of agricultural productivity vis-a-vis food security. In the last several decades, climate change has been linked to erratic rainfall distribution patterns and large variations in diurnal temperatures, because of a rise in atmospheric CO2 concentration. This, in turn, is thought to make world agricultural production systems more prone to failure. Soil organic carbon (SOC) is an important component for the functioning of agro-ecosystems, and its presence is central to the concept of sustainable maintenance of soil health. Soil is the largest terrestrial carbon sink and contains 2- and 3-times more carbon than the carbon in the atmosphere and vegetation, respectively. Therefore, a meager change in soil carbon sequestration will have a drastic impact on the global carbon cycle and climate change. The SOC has different pools and fractions including total organic carbon (TOC), particulate organic carbon (POC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), permanganate oxidizable carbon (KMnO4-C), and mineral associated organic carbon (MOC). Each has a varying degree of decomposition rate and stability. Researchers have identified many ways to offset the effect of climate change through modification of carbon sequestration in the soil. Identification of location-specific, suitable land use and management practices is one of the options to mitigate the impact of the climate change. It can be done by re-balancing different carbon pools and emission fluxes. Labile organic carbon pools including MBC, POC, and KMnO4-C are the most sensitive indicators for assessing soil quality after the adoption of alternate land use and management practices. Information on soil aggregation and SOC stabilization helps for long-term sequestration of carbon in the soil. Here we review the progress of work on SOC dynamics in the major ecosystems of the world. The information should enrich understanding of carbon sequestration and climate change mitigation strategies.Not Availabl

    Multifunctional applications of biochar beyond carbon storage

    No full text
    Biochar is produced as a charred material with high surface area and abundant functional groups by pyrolysis, which refers to the process of thermochemical decomposition of organic material at elevated temperatures in the absence of oxygen. The carbon component in biochar is relatively stable, and, hence, biochar was originally proposed as a soil amendment to store carbon in the soil. Biochar has multifunctional values that include the use of it for the following purposes: soil amendment to improve soil health, nutrient and microbial carrier, immobilising agent for remediation of toxic metals and organic contaminants in soil and water, catalyst for industrial applications, porous material for mitigating greenhouse gas emissions and odorous compounds, and feed supplement to improve animal health and nutrient intake efficiency and, thus, productivity. This article provides for the first time an overview of the multifunctional values and unintended consequences of biochar applications
    corecore