52 research outputs found

    Relating perturbation magnitude to temporal gene expression in biological systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most transcriptional activity is a result of environmental variability. This cause (environment) and effect (gene expression) relationship is essential to survival in any changing environment. The specific relationship between environmental perturbation and gene expression ā€“ and stability of the response ā€“ has yet to be measured in detail. We describe a method to quantitatively relate perturbation magnitude to response at the level of gene expression. We test our method using <it>Saccharomyces cerevisiae </it>as a model organism and osmotic stress as an environmental stress.</p> <p>Results</p> <p>Patterns of gene expression were measured in response to increasing sodium chloride concentrations (0, 0.5, 0.7, 1.0, and 1.2 M) for sixty genes impacted by osmotic shock. Expression of these genes was quantified over five time points using reverse transcriptase real-time polymerase chain reaction. Magnitudes of cumulative response for specific pathways, and the set of all genes, were obtained by combining the temporal response envelopes for genes exhibiting significant changes in expression with time. A linear relationship between perturbation magnitude and response was observed for the range of concentrations studied.</p> <p>Conclusion</p> <p>This study develops a quantitative approach to describe the stability of gene response and pathways to environmental perturbation and illustrates the utility of this approach. The approach should be applicable to quantitatively evaluate the response of organisms via the magnitude of response and stability of the transcriptome to environmental change.</p

    Development and validation of an eDNA protocol for monitoring endemic Asian spiny frogs in the Himalayan region of Pakistan

    Get PDF
    Wildlife monitoring programs are instrumental for the assessment of species, habitat status, and for the management of factors affecting them. This is particularly important for species found in freshwater ecosystems, such as amphibians, as they have higher estimated extinction rates than terrestrial species. We developed and validated two species-specific environmental DNA (eDNA) protocols and applied them in the field to detect the Hazara Torrent Frog (Allopaa hazarensis) and Murree Hills Frog (Nanorana vicina). Additionally, we compared eDNA surveys with visual encounter surveys and estimated site occupancy. eDNA surveys resulted in higher occurrence probabilities for both A. hazarensis and N. vicina than for visual encounter surveys. Detection probability using eDNA was greater for both species, particularly for A. hazarensis. The top-ranked detection model for visual encounter surveys included effects of both year and temperature on both species, and the top-ranked occupancy model included effects of elevation and year. The top-ranked detection model for eDNA data was the null model, and the top-ranked occupancy model included effects of elevation, year, and wetland type. To our knowledge, this is the first time an eDNA survey has been used to monitor amphibian species in the Himalayan region

    Revision of the nonequilibrium thermal dissociation and stringent washing approaches for identification of mixed nucleic acid targets by microarrays

    Get PDF
    Microarray experiments typically involve washing steps that remove hybridized nonspecific targets with the purpose of improving the signal-to-noise ratio. The quality of washing ultimately affects downstream analysis of the microarray and interpretation. The paucity of fundamental studies directed towards understanding the dissociation of mixed targets from microarrays makes the development of meaningful washing/dissociation protocols difficult. To fill the void, we examined activation energies and preexponential coefficients of 47 perfect match (PM) and double-mismatch (MM) duplex pairs to discover that there was no statistical difference between the kinetics of the PM and MM duplexes. Based on these findings, we evaluated the nonequilibrium thermal dissociation (NTD) approach, which has been used to identify specific microbial targets in mixed target samples. We found that the major premises for various washing protocols and the NTD approach might be seriously compromised because: (i) nonspecific duplexes do not always dissociate before specific ones, and (ii) the relationship between dissociation rates of the PM and MM duplexes depends on temperature and duplex sequence. Specifically for the NTD, we show that previously suggested use of reference curves, indices of curves and temperature ramps lead to erroneous conclusions

    Enhanced Biotransformation of Carbon Tetrachloride by Acetobacterium woodii upon Addition of Hydroxocobalamin and Fructose

    Get PDF
    The objective of this study was to evaluate the effect of hydroxocobalamin (OH-Cbl) on transformation of high concentrations of carbon tetrachloride (CT) by Acetobacterium woodii (ATCC 29683). Complete transformation of 470 Ī¼M (72 mg/liter [aqueous]) CT was achieved by A. woodii within 2.5 days, when 10 Ī¼M OH-Cbl was added along with 25.2 mM fructose. This was approximately 30 times faster than A. woodii cultures (live or autoclaved) and medium that did not receive OH-Cbl and 5 times faster than those controls that did receive OH-Cbl, but either live A. woodii or fructose was missing. CT transformation in treatments with only OH-Cbl was indicative of the important contribution of nonenzymatic reactions. Besides increasing the rate of CT transformation, addition of fructose and OH-Cbl to live cultures increased the percentage of [(14)C]CT transformed to (14)CO(2) (up to 31%) and (14)C-labeled soluble materials (principally l-lactate and acetate), while decreasing the percentage of CT reduced to chloroform and abiotically transformed to carbon disulfide. (14)CS(2) represented more than 35% of the [(14)C]CT in the presence of reduced medium and OH-Cbl. Conversion of CT to CO was a predominant pathway in formation of CO(2) in the presence of live cells and added fructose and OH-Cbl. These results indicate that the rate and distribution of products during cometabolic transformation of CT by A. woodii can be improved by the addition of fructose and OH-Cbl

    MicroRNAs-Based Inter-Domain Communication between the Host and Members of the Gut Microbiome

    No full text
    The gut microbiome is an important modulator of host gene expression, impacting important functions such as the innate immune response. Recent evidence suggests that the inter-domain communication between the gut microbiome and host may in part occur via microRNAs (small, non-coding RNA molecules) which are often differentially expressed in the presence of bacteria and can even be released and taken up by bacteria. The role of microRNAs in microbiomeā€“host communication in intestinal diseases is not fully understood, particularly in diseases impacted by exposure to environmental toxicants. Here, we review the present knowledge in the areas of microbiome and microRNA expression-based communication, microbiome and intestinal disease relationships, and microRNA expression responses to intestinal diseases. We also examine potential links between host microRNAā€“microbiota communication and exposure to environmental toxicants by reviewing connections between (i) toxicants and microRNA expression, (ii) toxicants and gut diseases, and (iii) toxicants and the gut microbiome. Future multidisciplinary research in this area is needed to uncover these interactions with the potential to impact how gut-microbiome associated diseases [e.g., inflammatory bowel disease (IBD) and many others] are managed
    • ā€¦
    corecore