36 research outputs found

    Role of underappreciated vectors in malaria transmission in an endemic region of Bangladesh-India border

    Get PDF
    Background Despite the efforts of the National Malaria Control Programme, malaria remains as an important public health problem in Bangladesh, particularly in the south-eastern region bordering India. Successful malaria control strategies rely on a detailed understanding of the underlying causes of malaria transmission. Here, an entomological survey was conducted in a malaria endemic area of Bangladesh bordering India to investigate the Anopheles mosquito community and assess their Plasmodium infection status. Methods Monthly entomological collections were undertaken from October 2010 to September 2011 in five villages in the Matiranga sub-district, Khagrachari district in Bangladesh, bordering the Indian State of Tripura. CDC miniature light traps were placed inside houses to collect adult Anopheles mosquitoes. Following morphological and molecular identification of the female Anopheles mosquitoes collected, they were screened for circumsporozoite proteins (CSP) of Plasmodium falciparum (Pf), Plasmodium vivax-210 (Pv-210) and Plasmodium vivax-247 (Pv-247), by ELISA to determine natural infection rates. Variation in Anopheles species composition, relative abundance and Plasmodium infection rates were analysed between sampled villages. Results A total of 2,027 female Anopheles were collected, belonging to 20 species. Anopheles nivipes was the most abundant species in our test villages during the peak malaria transmission season, and was observed sympatrically with An. philippinensis in the studied area. However, in the dry off-peak season, An. jeyporiensis was the most abundant species. Shannon’s diversity index was highest in October (2.12) and evenness was highest in May (0.91). The CSP ELISA positive rate overall was 0.44%. Anopheles karwari (n = 2), An. barbirostris s.l. (n = 1) and An. vagus (n = 1) were recorded positive for Pf. Anopheles kochi (n = 1) was positive for Pv-210 while An. umbrosus (n = 1), An. nivipes (n = 1) and An. kochi (n = 1) were positive for Pv-247. A mixed infection of Pf and Pv-247 was detected in An. barbirostris s.l.. Conclusion High diversity of Anopheles species was observed in areas close to the international border where species that were underestimated for malaria transmission significantly outnumbered principal vector species and these may play a significantly heightened role in malaria transmission

    Acute kidney injury due to star fruit ingestion: A case report

    Get PDF
    Star fruit (Avarrhoa carambola) is a fruit from oxalidace family. lt is found in many countries of the world including Bangladesh. But its ingestion or drinking star fruit juice may lead to intoxication especially in patients with chronic kidney disease and manifestations might be neurological or nephrological. lt may also cause acute kidney injury in patients with previously normal renal function. Here we are presenting a case who presented with acute kidney injury after star fruit ingestion with previously unknown renal function impairment. The etiology was confirmed by histopathological exami­nation after doing renal biopsy. This renal function impairment is mainly due to oxalate crystal induce nephropathy which is richly abundant in star fruit. His renal function was improved ·with conservative management. Physicians should be alert to consider the ingestion of star fruit as a cause of acute kidney injury in a patient even in the absence of previous renal function impairment

    Plasmid-mediated colistin resistance encoded by mcr-1 gene in Escherichia coli co-carrying blaCTX-M-15 and blaNDM-1 genes in pediatric patients in Qatar

    Get PDF
    Plasmid-mediated colistin resistance encoded by mcr-1 gene in Escherichia coli co-carrying blaCTX-M-15 and blaNDM-1 genes in pediatric patients in Qata

    Detection of SARS-CoV-2 RNA by direct RT-qPCR on nasopharyngeal specimens without extraction of viral RNA.

    Get PDF
    To circumvent the limited availability of RNA extraction reagents, we aimed to develop a protocol for direct RT-qPCR to detect SARS-CoV-2 in nasopharyngeal swabs without RNA extraction. Nasopharyngeal specimens positive for SARS-CoV-2 and other coronaviruses collected in universal viral transport (UVT) medium were pre-processed by several commercial and laboratory-developed methods and tested by RT-qPCR assays without RNA extraction using different RT-qPCR master mixes. The results were compared to that of standard approach that involves RNA extraction. Incubation of specimens at 65°C for 10 minutes along with the use of TaqPath™ 1-Step RT-qPCR Master Mix provides higher analytical sensitivity for detection of SARS-CoV-2 RNA than many other conditions tested. The optimized direct RT-qPCR approach demonstrated a limit of detection of 6.6x103 copy/ml and high reproducibility (co-efficient of variation = 1.2%). In 132 nasopharyngeal specimens submitted for SARS-CoV-2 testing, the sensitivity, specificity and accuracy of our optimized approach were 95%, 99% and 98.5%, respectively, with reference to the standard approach. Also, the RT-qPCR CT values obtained by the two methods were positively correlated (Pearson correlation coefficient r = 0.6971, p = 0.0013). The rate of PCR inhibition by the direct approach was 8% compared to 9% by the standard approach. Our simple approach to detect SARS-CoV-2 RNA by direct RT-qPCR may help laboratories continue testing for the virus despite reagent shortages or expand their testing capacity in resource limited settings

    Fecal Carriage and Molecular Characterization of Carbapenemase-Producing Enterobacterales in the Pediatric Population in Qatar

    Get PDF
    Whole-genome sequencing was used to characterize carbapenemase-producing Enterobacterales (CPE) strains recovered from rectal screening swab samples obtained from children at a tertiary-care pediatric hospital in Qatar during a 3-year period. A total of 72 CPE isolates recovered from 61 fecal carriers were characterized. Escherichia coli (47 isolates [65.3%]) and Klebsiella pneumoniae (22 isolates [30.6%]) were the most common species identified. High levels of genetic diversity were observed for both species. These 72 isolates produced 78 carbapenemases, characterized as either NDM-type (41 enzymes [52.6%]) or OXA-48-type (37 enzymes [47.4%]). NDM-5 (24 enzymes [30.8%]), NDM-1 (15 enzymes [19.2%]), and OXA-181 (15 enzymes [19.2%]) were the most common variants detected within each type. Twenty-three NDM producers exhibited difficult-to-treat resistance, compared with only 2 of the OXA-48 producers. Multiple comorbidities were identified in 88.5% of the patients, whereas recent travel history to countries in which CPE are endemic was documented for 57.4% of the patients. All 9 blaOXA-48-type-gene-containing E. coli sequence type 38 (ST38) strains were isolated from patients without international travel history. The mean quarterly incidence of fecal carriage decreased more than 6-fold after the implementation of coronavirus disease 2019 (COVID-19)-related international travel restrictions in Qatar in mid-March 2020. Our data suggest that NDM-type and OXA-48type carbapenemases expressed by a large diversity of E. coli and K. pneumoniae genotypes are largely dominant in the pediatric population of Qatar. Although our data indicate successful local expansion of E. coli ST38 strains harboring blaOXA-244 genes, at least within health care settings, blaOXA-48-type and blaNDM-type genes appear to have been mainly introduced sporadically by asymptomatic carriers who visited or received health care in some nearby countries in which the genes are endemic. IMPORTANCE To the best of our knowledge, this is the first study addressing the molecular characteristics of CPE in a pediatric population in Qatar using whole-genome sequencing. Since several countries in the Arabian Peninsula share relatively similar demographic patterns and international links, it is plausible that the molecular characteristics of CPE in children, at least in the middle and eastern parts of the region, are similar to those observed in our study.Sidra Internal Research Funding grant (project SIRF_200040)

    Functional Analyses of a Neural Cell Specific Variant of Microtubule-Associated Protein 4

    Get PDF
    The present study was conducted to analyze the functions of a recently reported neural cell specific variant of MAP4 (MAP4-SP) that lacks 72 consecutive amino acid residues in a region that is rich in proline and basic residues (pro-rich region). Although our previous study (Matsushima et al., 2005)^, using the microtubule-binding domains of the isoform and wild type MAP4 (MAP4-LP), demonstrated a difference in the microtubule bundling activity of the two proteins, here, using the full-length forms of the MAP4 proteins, we show that the proteins do not differ in their microtubule bundling activity both in vitro and in vivo. Expression of the MAP4 proteins, as C-terminal fusions to green fluorescent protein (GFP), in neuroblastoma cells revealed that MAP4-SP decorated microtubules were more remarkable in appearance than MAP4-LP decorated microtubules in the neuronal growth cones. Moreover, a microtubule destabilizing protein, septin2, which interacts with the pro-rich region of MAP4, was more active in destabilizing MAP4-SP-microtubules than MAP4-LP-microtubules in vitro. The susceptibility of MAP4-SP microtubules to destabilization by septin could be attributed to the weaker binding affinity of MAP4-SP for microtubules, as was reported earlier. Taken together, the current findings suggest the possibility that the neural MAP4, with its short pro-rich region, could be important in maintaining more dynamic microtubules in neural cells, and thus allowing more plasticity in and rapid morphological changes of these cells

    Nasopharyngeal Expression of Angiotensin-Converting Enzyme 2 and Transmembrane Serine Protease 2 in Children within SARS-CoV-2-Infected Family Clusters.

    Get PDF
    Lower levels of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in the nasal epithelium of children may be related to a lower incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, compared to adults. However, no direct evidence is available to support this hypothesis. In this study, we compared the transcript levels of ACE2 and TMPRSS2 in nasopharyngeal swab samples ( = 234) from children and adult family members within SARS-CoV-2-exposed families and assessed the association with SARS-CoV-2 infection status. Transcript levels for ACE2, but not TMPRSS2, were higher in adults than in children ( = 129 adults and 105 children; 0.05). The expression of the two genes was not significantly different between SARS-CoV-2 positive and SARS-CoV-2 negative patients within the same age groups. However, in families with one or more SARS-CoV-2 positive adult family members, expression of both genes was significantly higher in SARS-CoV-2 positive children than in SARS-CoV-2 negative children (0.05). By multivariate analysis, ACE2 expression adjusted for age and sex was significantly associated with SARS-CoV-2 infection in the overall population (odds ratio [OR], 1.112 [95% confidence interval [CI], 1.012 to 1.229]; 0.05). The degree of this association was higher (OR, 1.172 [95% CI, 1.034 to 1.347]; 0.05) in the subgroup of families with only SARS-CoV-2 positive adult family members. Our results suggest that children with lower levels of nasal ACE2 and TMPRSS2 are more likely to remain SARS-CoV-2 negative despite being exposed to a SARS-CoV-2 positive adult family member. ACE2 and TMPRSS2 are well established in the literature as SARS-CoV-2 entry factors. Recent data suggest that lower levels of nasal ACE2 in children may be associated with their lower incidence of coronavirus disease 2019 (COVID-19). In this study, using data from nasopharyngeal swab specimens from adult and pediatric members of families in which one or more members of the family had laboratory-confirmed SARS-CoV-2 infection, we show that children with lower levels of ACE2 and TMPRSS2 are more likely to remain SARS-CoV-2 negative despite being exposed to a SARS-CoV-2 positive adult family member. These results provide new insights into the roles of nasopharyngeal ACE2 and TMPRSS2 in acquiring SARS-CoV-2 infection, and they show that the differential expression of these genes in adults versus children may contribute to differential rates of SARS-CoV-2 infection in these populations

    フェリチンと神経特異型微小管結合タンパク質4の微小管結合特性に関する研究

    Get PDF
    九州工業大学博士学位論文(要旨) 学位記番号:情工博甲第175号 学位授与年月日:平成18年3月23日九州工業大
    corecore