8 research outputs found
Novel CARMIL2 Mutations in Patients with Variable Clinical Dermatitis, Infections, and Combined Immunodeficiency
Combined immunodeficiencies are a heterogeneous collection of primary immune disorders that exhibit defects in T cell development or function, along with impaired B cell activity even in light of normal B cell maturation. CARMIL2 (RLTPR) is a protein involved in cytoskeletal organization and cell migration, which also plays a role in CD28 co-signaling of T cells. Mutations in this protein have recently been reported to cause a novel primary immunodeficiency disorder with variable phenotypic presentations. Here, we describe seven patients from three unrelated, consanguineous multiplex families that presented with dermatitis, esophagitis, and recurrent skin and chest infections with evidence of combined immunodeficiency. Through the use of whole exome sequencing and autozygome-guided analysis, we uncovered two mutations not previously reported (p.R50T and p.L846Sfs) in CARMIL2. Real-time PCR analysis revealed that the biallelic frameshift mutation is under negative selection, likely due to nonsense-mediated RNA decay and leading to loss of detectable protein upon immunoblotting. Protein loss was also observed for the missense mutation, and 3D modeling suggested a disturbance in structural stability due to an increase in the electrostatic energy for the affected amino acid and surrounding residues. Immunophenotyping revealed that patient Treg counts were significantly depressed, and that CD4+ T cells were heavily skewed towards the naïve status. CD3/CD28 signaling impairment was evidenced by reduced proliferative response to stimulation. This work broadens the allelic heterogeneity associated with CARMIL2 and highlights a deleterious missense alteration located outside the leucine-rich repeat of the protein, where all other missense mutations have been reported to date
Recommended from our members
A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency
Patients with a combined immunodeficiency characterized by normal numbers, but impaired function, of T and B cells had a homozygous p.Tyr20His mutation in transferrin receptor 1 (TfR1), encoded by TFRC. The mutation disrupts the TfR1 internalization motif, resulting in defective receptor endocytosis and markedly increased TfR1 surface expression. Iron citrate rescued the lymphocyte defects and transduction of wild type, but not mutant, TfR1 rescued impaired transferrin uptake in patient fibroblasts. TfrcY20H/Y20H mice recapitulated the patients’ immunologic defects. Despite the critical role of TfR1 in erythrocyte development and function, the patients had only mild anemia and only slightly increased TfR1 expression in erythroid precursors. We show that STEAP3, a metalloreductase expressed in erythroblasts, associates with TfR1 and partially rescues transferrin uptake in patient fibroblasts, suggesting that STEAP3 may provide an accessory TfR1 endocytosis signal that spares the patients from severe anemia. These findings demonstrate the importance of TfR1 in adaptive immunity