31,907 research outputs found

    Derivation of effective spin models from a three band model for CuO_2-planes

    Full text link
    The derivation of effective spin models describing the low energy magnetic properties of undoped CuO_2-planes is reinvestigated. Our study aims at a quantitative determination of the parameters of effective spin models from those of a multi-band model and is supposed to be relevant to the analysis of recent improved experimental data on the spin wave spectrum of La_2CuO_4. Starting from a conventional three-band model we determine the exchange couplings for the nearest and next-nearest neighbor Heisenberg exchange as well as for 4- and 6-spin exchange terms via a direct perturbation expansion up to 12th (14th for the 4-spin term) order with respect to the copper-oxygen hopping t_pd. Our results demonstrate that this perturbation expansion does not converge for hopping parameters of the relevant size. Well behaved extrapolations of the couplings are derived, however, in terms of Pade approximants. In order to check the significance of these results from the direct perturbation expansion we employ the Zhang-Rice reformulation of the three band model in terms of hybridizing oxygen Wannier orbitals centered at copper ion sites. In the Wannier notation the perturbation expansion is reorganized by an exact treatment of the strong site-diagonal hybridization. The perturbation expansion with respect to the weak intersite hybridizations is calculated up to 4th order for the Heisenberg coupling and up to 6th order for the 4-spin coupling. It shows excellent convergence and the results are in agreement with the Pade approximants of the direct expansion. The relevance of the 4-spin coupling as the leading correction to the nearest neighbor Heisenberg model is emphasized.Comment: 27 pages, 10 figures. Changed from particle to hole notation, right value for the charge transfer gap used; this results in some changes in the figures and a higher value of the ring exchang

    Large-deviation properties of the extended Moran model

    Full text link
    The distributions of the times to the first common ancestor t_mrca is numerically studied for an ecological population model, the extended Moran model. This model has a fixed population size N. The number of descendants is drawn from a beta distribution Beta(alpha, 2-alpha) for various choices of alpha. This includes also the classical Moran model (alpha->0) as well as the uniform distribution (alpha=1). Using a statistical mechanics-based large-deviation approach, the distributions can be studied over an extended range of the support, down to probabilities like 10^{-70}, which allowed us to study the change of the tails of the distribution when varying the value of alpha in [0,2]. We find exponential distributions p(t_mrca)~ delta^{t_mrca} in all cases, with systematically varying values for the base delta. Only for the cases alpha=0 and alpha=1, analytical results are known, i.e., delta=\exp(-2/N^2) and delta=2/3, respectively. We recover these values, confirming the validity of our approach. Finally, we also study the correlations between t_mrca and the number of descendants.Comment: 8 pages, 8 figure

    On the Origin of the Non-Fermi Liquid Behavior of SrRuO_{3}

    Full text link
    Motivated by the unusual features observed in the transport properties of the ferromagnetic "bad metal" SrRuO3SrRuO_{3}, we construct a model incorporating essential features of the realistic structure of this nearly cubic material. In particular, we show how the t2gt_{2g}orbital {\it orientation} in the perfectly cubic structure determines the peculiar structure of the hybridization matrix, and demonstrate how the local non-Fermi liquid features arise when interactions are switched on. we discuss the effect of the slight deviation from the cubic structure (at low-TT) qualitatively. The model provides a consistent explanation of the features observed recently in the optical response of SrRuO3SrRuO_{3}.Comment: 4 pages. Submitted to Physical Review Letter

    Direct sampling of complex landscapes at low temperatures: the three-dimensional +/-J Ising spin glass

    Full text link
    A method is presented, which allows to sample directly low-temperature configurations of glassy systems, like spin glasses. The basic idea is to generate ground states and low lying excited configurations using a heuristic algorithm. Then, with the help of microcanonical Monte Carlo simulations, more configurations are found, clusters of configurations are determined and entropies evaluated. Finally equilibrium configuration are randomly sampled with proper Gibbs-Boltzmann weights. The method is applied to three-dimensional Ising spin glasses with +- J interactions and temperatures T<=0.5. The low-temperature behavior of this model is characterized by evaluating different overlap quantities, exhibiting a complex low-energy landscape for T>0, while the T=0 behavior appears to be less complex.Comment: 9 pages, 7 figures, revtex (one sentence changed compared to v2

    Critical behavior of the Random-Field Ising model at and beyond the Upper Critical Dimension

    Full text link
    The disorder-driven phase transition of the RFIM is observed using exact ground-state computer simulations for hyper cubic lattices in d=5,6,7 dimensions. Finite-size scaling analyses are used to calculate the critical point and the critical exponents of the specific heat, magnetization, susceptibility and of the correlation length. For dimensions d=6,7 which are larger or equal to the assumed upper critical dimension, d_u=6, mean-field behaviour is found, i.e. alpha=0, beta=1/2, gamma=1, nu=1/2. For the analysis of the numerical data, it appears to be necessary to include recently proposed corrections to scaling at and beyond the upper critical dimension.Comment: 8 pages and 13 figures; A consise summary of this work can be found in the papercore database at http://www.papercore.org/Ahrens201
    • …
    corecore