662 research outputs found
Solar wind maintenance of the nighttime Venus ionosphere
An attempt is made to establish an ionization source capable of maintaining the nighttime Venus ionosphere. The corpuscular ionization and heating caused by the penetration of solar wind plasma into the nightside ionosphere was suggested as a possible source. Theoretical tests, using an interacting solar wind model, were made of the electron density and the results compared with observed electron density profiles. Results indicate the solar wind could maintain the nighttime ionosphere of Venus
Wind enhanced planetary escape: Collisional modifications
The problem of thermal escape is considered in which both the effects of thermospheric winds at the exobase and collisions below the exobase are included in a Monte Carlo calculation. The collisions are included by means of a collisional relaxation layer of a background gas which models the transition region between the exosphere and the thermosphere. The wind effects are considered in the limiting cases of vertical and horizontal flows. Two species are considered: terrestrial hydrogen and terrestrial helium. In the cases of terrestrial hydrogen the escape fluxes were found to be strongly filtered or throttled by collisions at high exospheric temperatures. The model is applied to molecular hydrogen diffusing through a methane relaxation layer under conditions possible on Titan. The results are similar to the case of terrestrial hydrogen with wind enhanced escape being strongly suppressed by collisions. It is concluded that wind enhanced escape is not an important process on Titan
Model for energy transfer in the solar wind: Formulation of model
The two-fluid solar-wind model is extended by including the collisionless dissipation of hydromagnetic waves originating at the sun. A series of solar wind models is generated, parameterized by the total energy flux of hydromagnetic waves at the base of the model. The resulting properties of propagation and dissipating of hydromagnetic waves on this model are presented
The Quantum Mechanical Arrows of Time
The familiar textbook quantum mechanics of laboratory measurements
incorporates a quantum mechanical arrow of time --- the direction in time in
which state vector reduction operates. This arrow is usually assumed to
coincide with the direction of the thermodynamic arrow of the quasiclassical
realm of everyday experience. But in the more general context of cosmology we
seek an explanation of all observed arrows, and the relations between them, in
terms of the conditions that specify our particular universe. This paper
investigates quantum mechanical and thermodynamic arrows in a time-neutral
formulation of quantum mechanics for a number of model cosmologies in fixed
background spacetimes. We find that a general universe may not have well
defined arrows of either kind. When arrows are emergent they need not point in
the same direction over the whole of spacetime. Rather they may be local,
pointing in different directions in different spacetime regions. Local arrows
can therefore be consistent with global time symmetry.Comment: 9 pages, 4 figures, revtex4, typos correcte
Conditional probabilities in Ponzano-Regge minisuperspace
We examine the Hartle-Hawking no-boundary initial state for the Ponzano-Regge
formulation of gravity in three dimensions. We consider the behavior of
conditional probabilities and expectation values for geometrical quantities in
this initial state for a simple minisuperspace model consisting of a
two-parameter set of anisotropic geometries on a 2-sphere boundary. We find
dependence on the cutoff used in the construction of Ponzano-Regge amplitudes
for expectation values of edge lengths. However, these expectation values are
cutoff independent when computed in certain, but not all, conditional
probability distributions. Conditions that yield cutoff independent expectation
values are those that constrain the boundary geometry to a finite range of edge
lengths. We argue that such conditions have a correspondence to fixing a range
of local time, as classically associated with the area of a surface for
spatially closed cosmologies. Thus these results may hint at how classical
spacetime emerges from quantum amplitudes.Comment: 26 pages including 10 figures, some reorganization in the
presentation of results, expanded discussion of results in the context of 2+1
gravity in the Witten variables, 3 new reference
Flux estimates of ions from the lunar exosphere
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95219/1/grl29279.pd
Quasiclassical Coarse Graining and Thermodynamic Entropy
Our everyday descriptions of the universe are highly coarse-grained,
following only a tiny fraction of the variables necessary for a perfectly
fine-grained description. Coarse graining in classical physics is made natural
by our limited powers of observation and computation. But in the modern quantum
mechanics of closed systems, some measure of coarse graining is inescapable
because there are no non-trivial, probabilistic, fine-grained descriptions.
This essay explores the consequences of that fact. Quantum theory allows for
various coarse-grained descriptions some of which are mutually incompatible.
For most purposes, however, we are interested in the small subset of
``quasiclassical descriptions'' defined by ranges of values of averages over
small volumes of densities of conserved quantities such as energy and momentum
and approximately conserved quantities such as baryon number. The
near-conservation of these quasiclassical quantities results in approximate
decoherence, predictability, and local equilibrium, leading to closed sets of
equations of motion. In any description, information is sacrificed through the
coarse graining that yields decoherence and gives rise to probabilities for
histories. In quasiclassical descriptions, further information is sacrificed in
exhibiting the emergent regularities summarized by classical equations of
motion. An appropriate entropy measures the loss of information. For a
``quasiclassical realm'' this is connected with the usual thermodynamic entropy
as obtained from statistical mechanics. It was low for the initial state of our
universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th
birthday, minor correction
Decoherence of Hydrodynamic Histories: A Simple Spin Model
In the context of the decoherent histories approach to the quantum mechanics
of closed systems, Gell-Mann and Hartle have argued that the variables
typically characterizing the quasiclassical domain of a large complex system
are the integrals over small volumes of locally conserved densities --
hydrodynamic variables. The aim of this paper is to exhibit some simple models
in which approximate decoherence arises as a result of local conservation. We
derive a formula which shows the explicit connection between local conservation
and approximate decoherence. We then consider a class of models consisting of a
large number of weakly interacting components, in which the projections onto
local densities may be decomposed into projections onto one of two alternatives
of the individual components. The main example we consider is a one-dimensional
chain of locally coupled spins, and the projections are onto the total spin in
a subsection of the chain. We compute the decoherence functional for histories
of local densities, in the limit when the number of components is very large.
We find that decoherence requires two things: the smearing volumes must be
sufficiently large to ensure approximate conservation, and the local densities
must be partitioned into sufficiently large ranges to ensure protection against
quantum fluctuations.Comment: Standard TeX, 36 pages + 3 figures (postscript) Revised abstract and
introduction. To appear in Physical Review
Foundations of a spacetime path formalism for relativistic quantum mechanics
Quantum field theory is the traditional solution to the problems inherent in
melding quantum mechanics with special relativity. However, it has also long
been known that an alternative first-quantized formulation can be given for
relativistic quantum mechanics, based on the parametrized paths of particles in
spacetime. Because time is treated similarly to the three space coordinates,
rather than as an evolution parameter, such a spacetime approach has proved
particularly useful in the study of quantum gravity and cosmology. This paper
shows how a spacetime path formalism can be considered to arise naturally from
the fundamental principles of the Born probability rule, superposition, and
Poincar\'e invariance. The resulting formalism can be seen as a foundation for
a number of previous parametrized approaches in the literature, relating, in
particular, "off-shell" theories to traditional on-shell quantum field theory.
It reproduces the results of perturbative quantum field theory for free and
interacting particles, but provides intriguing possibilities for a natural
program for regularization and renormalization. Further, an important
consequence of the formalism is that a clear probabilistic interpretation can
be maintained throughout, with a natural reduction to non-relativistic quantum
mechanics.Comment: RevTex 4, 42 pages; V6 is as accepted for publication in the Journal
of Mathematical Physics, updated in response to referee comments; V7 includes
final editorial correction
- …