240 research outputs found
Hepatitis C and Non-Hodgkin Lymphoma Among 4784 Cases and 6269 Controls From the International Lymphoma Epidemiology Consortium
Background & Aims: increasing evidence points towards a role of hepatitis C virus (HCV) infection in causing malignant lymphomas. We pooled case-control study data to provide robust estimates of the risk of non-Hodgkin's lymphoma (NHL) subtypes after HCV infection. Methods: The analysis included 7 member studies from the International Lymphoma Epidemiology Consortium (InterLymph) based in Europe, North America, and Australia. Adult cases of NHL (n = 4784) were diagnosed between 1988 and 2004 and controls (n = 6269) were matched by age, sex, and study center. All studies used third-generation enzyme-linked immunosorbent assays to test for antibodies against HCV in serum samples. Participants who were human immunodeficiency virus positive or were organ-transplant recipients were excluded. Results: HCV infection was detected in 172 NHL cases (3.60%) and in 169 (2.70%) controls (odds ratio [OR], 1.78; 95% confidence interval [CI], 1.40 -2.25). In subtype-specific analyses, HCV prevalence was associated with marginal zone lymphoma (OR, 2.47; 95% CI, 1.44-4.23), diffuse large B-cell lymphoma (OR, 2.24; 95% CI, 1.682.99), and lymphoplasmacytic lymphoma (OR, 2.57; 95% CI, 1.14-5.79). Notably, risk estimates were not increased for follicular lymphoma (OR, 1.02; 95% CI, 0.65-1.60). Conclusions: These results confirm the association between HCV infection and NHL and specific B-NHL subtypes (diffuse large B-cell lymphoma, marginal zone lymphoma, and lymphoplasmacytic lymphoma)
Diabetes Is an Independent Risk Factor for Severe Nocturnal Hypoxemia in Obese Patients. A Case-Control Study
Type 2 diabetes mellitus (T2DM) and obesity have become two of the main threats to public health in the Western world. In addition, obesity is the most important determinant of the sleep apnea-hypopnea syndrome (SAHS), a condition that adversely affects glucose metabolism. However, it is unknown whether patients with diabetes have more severe SAHS than non-diabetic subjects. The aim of this cross-sectional case-control study was to evaluate whether obese patients with T2DM are more prone to severe SAHS than obese non-diabetic subjects.Thirty obese T2DM and 60 non-diabetic women closely matched by age, body mass index, waist circumference, and smoking status were recruited from the outpatient Obesity Unit of a university hospital. The exclusion criteria included chronic respiratory disease, smoking habit, neuromuscular and cerebrovascular disease, alcohol abuse, use of sedatives, and pregnancy. Examinations included a non-attended respiratory polygraphy, pulmonary function testing, and an awake arterial gasometry. Oxygen saturation measures included the percentage of time spent at saturations below 90% (CT90). A high prevalence of SAHS was found in both groups (T2DM:80%, nondiabetic:78.3%). No differences in the number of sleep apnea-hypopnea events between diabetic and non-diabetic patients were observed. However, in diabetic patients, a significantly increase in the CT90 was detected (20.2+/-30.2% vs. 6.8+/-13,5%; p = 0.027). In addition, residual volume (RV) was significantly higher in T2DM (percentage of predicted: 79.7+/-18.1 vs. 100.1+/-22.8; p<0.001). Multiple linear regression analyses showed that T2DM but not RV was independently associated with CT90.T2DM adversely affects breathing during sleep, becoming an independent risk factor for severe nocturnal hypoxemia in obese patients. Given that SAHS is a risk factor of cardiovascular disease, the screening for SAHS in T2DM patients seems mandatory
Recommended from our members
A Pooled Analysis of Body Mass Index and Mortality among African Americans
Pooled analyses among whites and East Asians have demonstrated positive associations between all-cause mortality and body mass index (BMI), but studies of African Americans have yielded less consistent results. We examined the association between BMI and all-cause mortality in a sample of African Americans pooled from seven prospective cohort studies: NIH-AARP, 1995–2009; Adventist Health Study 2, 2002–2008; Black Women's Health Study, 1995–2009; Cancer Prevention Study II, 1982–2008; Multiethnic Cohort Study, 1993–2007; Prostate, Lung, Colorectal and Ovarian Screening Trial, 1993–2009; Southern Community Cohort Study, 2002–2009. 239,526 African Americans (including 100,175 never smokers without baseline heart disease, stroke, or cancer), age 30–104 (mean 52) and 71% female, were followed up to 26.5 years (mean 11.7). Hazard ratios (HR) and 95% confidence intervals (CI) for mortality were derived from multivariate Cox proportional hazards models. Among healthy, never smokers (11,386 deaths), HRs (CI) for BMI 25–27.4, 27.5–29.9, 30–34.9, 35–39.9, 40–49.9, and 50–60 kg/m2 were 1.02 (0.92–1.12), 1.06 (0.95–1.18), 1.32 (1.18–1.47), 1.54 (1.29–1.83), 1.93 (1.46–2.56), and 1.93 (0.80–4.69), respectively among men and 1.06 (0.99–1.15), 1.15 (1.06–1.25), 1.24 (1.15–1.34), 1.58 (1.43–1.74), 1.80 (1.60–2.02), and 2.31 (1.74–3.07) respectively among women (reference category 22.5–24.9). HRs were highest among those with the highest educational attainment, longest follow-up, and for cardiovascular disease mortality. Obesity was associated with a higher risk of mortality in African Americans, similar to that observed in pooled analyses of whites and East Asians. This study provides compelling evidence to support public health efforts to prevent excess weight gain and obesity in African Americans
IARC Monographs: 40 Years of Evaluating Carcinogenic Hazards to Humans
Background: Recently, the International Agency for Research on Cancer (IARC) Programme for the Evaluation of Carcinogenic Risks to Humans has been criticized for several of its evaluations, and also for the approach used to perform these evaluations. Some critics have claimed that failures of IARC Working Groups to recognize study weaknesses and biases of Working Group members have led to inappropriate classification of a number of agents as carcinogenic to humans.
Objectives: The authors of this Commentary are scientists from various disciplines relevant to the identification and hazard evaluation of human carcinogens. We examined criticisms of the IARC classification process to determine the validity of these concerns. Here, we present the results of that examination, review the history of IARC evaluations, and describe how the IARC evaluations are performed.
Discussion: We concluded that these recent criticisms are unconvincing. The procedures employed by IARC to assemble Working Groups of scientists from the various disciplines and the techniques followed to review the literature and perform hazard assessment of various agents provide a balanced evaluation and an appropriate indication of the weight of the evidence. Some disagreement by individual scientists to some evaluations is not evidence of process failure. The review process has been modified over time and will undoubtedly be altered in the future to improve the process. Any process can in theory be improved, and we would support continued review and improvement of the IARC processes. This does not mean, however, that the current procedures are flawed.
Conclusions: The IARC Monographs have made, and continue to make, major contributions to the scientific underpinning for societal actions to improve the public’s health
Recommended from our members
Association between Class III Obesity (BMI of 40–59 kg/m2) and Mortality: A Pooled Analysis of 20 Prospective Studies
Background: The prevalence of class III obesity (body mass index [BMI]≥40 kg/m2) has increased dramatically in several countries and currently affects 6% of adults in the US, with uncertain impact on the risks of illness and death. Using data from a large pooled study, we evaluated the risk of death, overall and due to a wide range of causes, and years of life expectancy lost associated with class III obesity. Methods and Findings: In a pooled analysis of 20 prospective studies from the United States, Sweden, and Australia, we estimated sex- and age-adjusted total and cause-specific mortality rates (deaths per 100,000 persons per year) and multivariable-adjusted hazard ratios for adults, aged 19–83 y at baseline, classified as obese class III (BMI 40.0–59.9 kg/m2) compared with those classified as normal weight (BMI 18.5–24.9 kg/m2). Participants reporting ever smoking cigarettes or a history of chronic disease (heart disease, cancer, stroke, or emphysema) on baseline questionnaires were excluded. Among 9,564 class III obesity participants, mortality rates were 856.0 in men and 663.0 in women during the study period (1976–2009). Among 304,011 normal-weight participants, rates were 346.7 and 280.5 in men and women, respectively. Deaths from heart disease contributed largely to the excess rates in the class III obesity group (rate differences = 238.9 and 132.8 in men and women, respectively), followed by deaths from cancer (rate differences = 36.7 and 62.3 in men and women, respectively) and diabetes (rate differences = 51.2 and 29.2 in men and women, respectively). Within the class III obesity range, multivariable-adjusted hazard ratios for total deaths and deaths due to heart disease, cancer, diabetes, nephritis/nephrotic syndrome/nephrosis, chronic lower respiratory disease, and influenza/pneumonia increased with increasing BMI. Compared with normal-weight BMI, a BMI of 40–44.9, 45–49.9, 50–54.9, and 55–59.9 kg/m2 was associated with an estimated 6.5 (95% CI: 5.7–7.3), 8.9 (95% CI: 7.4–10.4), 9.8 (95% CI: 7.4–12.2), and 13.7 (95% CI: 10.5–16.9) y of life lost. A limitation was that BMI was mainly ascertained by self-report. Conclusions: Class III obesity is associated with substantially elevated rates of total mortality, with most of the excess deaths due to heart disease, cancer, and diabetes, and major reductions in life expectancy compared with normal weight. Please see later in the article for the Editors' Summar
Ovarian cancer risk factors by tumor aggressiveness : An analysis from the Ovarian Cancer Cohort Consortium
Ovarian cancer risk factors differ by histotype; however, within subtype, there is substantial variability in outcomes. We hypothesized that risk factor profiles may influence tumor aggressiveness, defined by time between diagnosis and death, independent of histology. Among 1.3 million women from 21 prospective cohorts, 4,584 invasive epithelial ovarian cancers were identified and classified as highly aggressive (death in = 35 vs. 20 to <25 kg/m(2), 1.93 [1.46-2.56] and current smoking (vs. never, 1.30 [1.07-1.57]) were associated with increased risk of highly aggressive disease. Results were similar within histotypes. Ovarian cancer risk factors may be directly associated with subtypes defined by tumor aggressiveness, rather than through differential effects on histology. Studies to assess biological pathways are warranted.Peer reviewe
- …