32,903 research outputs found
Primary radical yields in pulse irradiated alkaline aqueous solution
Primary radical yields of hydrated electrons, H atoms, and OH radicals are determined by measuring hydrated electron formation following a 4 microsecond pulse of X rays. The pH dependence of free radical yields beyond pH 12 is determined by observation of the hydrated electrons
Sensitivity of solar-cell performance to atmospheric variables. 2: Dissimilar cells at several locations
Several solar cells having dissimilar spectral response curves and cell construction were measured at various locations in the United States to determine sensitivity of cell performance to atmospheric water vapor and turbidity. The locations selected represent a broad range of summer atmospheric conditions, from clear and dry to turbid and humid. Cell short circuit current under direct normal incidence sunlight, the intensity, water vapor and turbidity were measured. Regression equations were developed from the limited data base in order to provide a single method of prediction of cell current sensitivity to the atmospheric variables
EAGLEView: A surface and grid generation program and its data management
An old and proven grid generation code, the EAGLE grid generation package, is given an added dimension of a graphical interface and a real time data base manager. The Numerical Aerodynamic Simulation (NAS) Panel Library is used for the graphical user interface. Through the panels, EAGLEView constructs the EAGLE script command and sends it to EAGLE to be processed. After the object is created, the script is saved in a mini-buffer which can be edited and/or saved and reinterpreted. The graphical objects are set-up in a linked-list and can be selected or queried by pointing and clicking the mouse. The added graphical enhancement to the EAGLE system emphasizes the unique capability to construct field points around complex geometry and visualize the construction every step of the way
Directed Explicit Model Checking with HSF-SPIN
We present the explicit state model checker HSF-SPIN which is based on the model checker SPIN and its Promela modeling language. HSF-SPIN incorporates directed search algorithms for checking safety and a large class of LTL-specified liveness properties. We start off from the A* algorithm and define heuristics to accelerate the search into the direction of a specified failure situation. Next we propose an improved nested depth-first search algorithm that exploits the structure of Promela Never-Claims. As a result of both improvements, counterexamples will be shorter and the explored part of the state space will be smaller than with classical approaches, allowing to analyze larger state spaces. We evaluate the impact of the new heuristics and algorithms on a set of protocol models, some of which are real-world industrial protocols
Monopole clusters in Abelian projected gauge theories
We show that the monopole currents which one obtains in the maximally Abelian
gauge of SU(2) fall into two quite distinct classes (when the volume is large
enough). In each field configuration there is precisely one cluster that
permeates the whole lattice volume. It has a current density and a magnetic
screening mass that scale and it produces the whole of the string tension. The
remaining clusters have a number density that follows an approximate power law
proportional to the inverse cube of l where l is the length of the monopole
world line in lattice units. These clusters are localised in space-time with
radii which vary as the square root of l. In terms of the radius r these
`lumps' have a scale-invariant distribution proportional to (dr/r . 1/{r^4}).
Moreover they appear not to contribute at all to the string tension. The fact
that they are scale-invariant at small distances would seem to rule out an
instanton origin.Comment: LaTeX, 31 pages, 11 PostScript figures. Typo in Table 2 correcte
Loss of redundant gene expression after polyploidization in plants
Based on chromosomal location data of genes encoding 28 biochemical systems in allohexaploid wheat,Triticum aestivum L. (genomes AABBDD), it is concluded that the proportions of systems controlled by triplicate, duplicate, and single loci are 57%, 25%, and 18% respectively
The Index Theorem and Universality Properties of the Low-lying Eigenvalues of Improved Staggered Quarks
We study various improved staggered quark Dirac operators on quenched gluon
backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We
find a clear separation of the spectrum into would-be zero modes and others.
The number of would-be zero modes depends on the topological charge as expected
from the Index Theorem, and their chirality expectation value is large
(approximately 0.7). The remaining modes have low chirality and show clear
signs of clustering into quartets and approaching the random matrix theory
predictions for all topological charge sectors. We conclude that improvement of
the fermionic and gauge actions moves the staggered quarks closer to the
continuum limit where they respond correctly to QCD topology.Comment: 4 pages, 3 figure
The effect of short ray trajectories on the scattering statistics of wave chaotic systems
In many situations, the statistical properties of wave systems with chaotic
classical limits are well-described by random matrix theory. However,
applications of random matrix theory to scattering problems require
introduction of system specific information into the statistical model, such as
the introduction of the average scattering matrix in the Poisson kernel. Here
it is shown that the average impedance matrix, which also characterizes the
system-specific properties, can be expressed in terms of classical trajectories
that travel between ports and thus can be calculated semiclassically.
Theoretical results are compared with numerical solutions for a model
wave-chaotic system
Ground-layer wavefront reconstruction from multiple natural guide stars
Observational tests of ground layer wavefront recovery have been made in open
loop using a constellation of four natural guide stars at the 1.55 m Kuiper
telescope in Arizona. Such tests explore the effectiveness of wide-field seeing
improvement by correction of low-lying atmospheric turbulence with ground-layer
adaptive optics (GLAO). The wavefronts from the four stars were measured
simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x
5 array of square subapertures across the pupil of the telescope, allowing for
wavefront reconstruction up to the fifth radial Zernike order. We find that the
wavefront aberration in each star can be roughly halved by subtracting the
average of the wavefronts from the other three stars. Wavefront correction on
this basis leads to a reduction in width of the seeing-limited stellar image by
up to a factor of 3, with image sharpening effective from the visible to near
infrared wavelengths over a field of at least 2 arc minutes. We conclude that
GLAO correction will be a valuable tool that can increase resolution and
spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.
Monopole clusters, Z(2) vortices and confinement in SU(2)
We extend our previous study of magnetic monopole currents in the maximally
Abelian gauge [hep-lat/9712003] to larger lattices at small lattice spacings
(20^4 at beta = 2.5 and 32^4 at beta = 2.5115). We confirm that at these weak
couplings there continues to be one monopole cluster that is very much longer
than the rest and that the string tension, K, is entirely due to it. The
remaining clusters are compact objects whose population as a function of radius
follows a power law that deviates from the scale invariant form, but much too
weakly to suggest a link with the analytically calculable size distribution of
small instantons. We also search for traces of Z(2) vortices in the Abelian
projected fields; either as closed loops of `magnetic' flux or through
appropriate correlations amongst the monopoles. We find, by direct calculation,
that there is no confining condensate of such flux loops. We also find, through
the calculation of doubly charged Wilson loops within the monopole fields, that
there is no suppression of the q=2 effective string tension out to at distances
of at least r ~ 1.6/sqrt{K}, suggesting that if there are any vortices they are
not encoded in the monopole fields.Comment: 26 pages of LaTeX and PostScript figure
- …