2,462 research outputs found
Smooth Value Functions for a Class of Nonsmooth Utility Maximization Problems
In this paper we prove that there exists a smooth classical solution to the
HJB equation for a large class of constrained problems with utility functions
that are not necessarily differentiable or strictly concave. The value function
is smooth if admissible controls satisfy an integrability condition or if it is
continuous on the closure of its domain. The key idea is to work on the dual
control problem and the dual HJB equation. We construct a smooth, strictly
convex solution to the dual HJB equation and show that its conjugate function
is a smooth, strictly concave solution to the primal HJB equation satisfying
the terminal and boundary conditions.Comment: 18 page
Amplitude-Independent Machine Learning for PPG through Visibility Graphs and Transfer Learning
Photoplethysmography (PPG) refers to the measurement of variations in blood
volume using light and is a feature of most wearable devices. The PPG signals
provide insight into the body's circulatory system and can be employed to
extract various bio-features, such as heart rate and vascular ageing. Although
several algorithms have been proposed for this purpose, many exhibit
limitations, including heavy reliance on human calibration, high signal quality
requirements, and a lack of generalisation. In this paper, we introduce a PPG
signal processing framework that integrates graph theory and computer vision
algorithms, to provide an analysis framework which is amplitude-independent and
invariant to affine transformations. It also requires minimal preprocessing,
fuses information through RGB channels and exhibits robust generalisation
across tasks and datasets. The proposed VGTL-net achieves state-of-the-art
performance in the prediction of vascular ageing and demonstrates robust
estimation of continuous blood pressure waveforms
Tuning the Underwater Oleophobicity of Graphene Oxide Coatings via UV Irradiation
Ultraviolet (UV) irradiation was utilized to gradually modify the chemistry and structure of graphene oxide (GO) flakes, as confirmed by XPS and AFM. Ultrathin GO coatings/membranes, made of UV-irradiated flakes, showed tunable underwater oleophobicity. UV-treated, superoleophobic GO membranes exhibited excellent antifouling capability for oil/water separation
Heterogeneity of Particle Deposition by Pixel Analysis of 2D Gamma Scintigraphy Images
Background: Heterogeneity of inhaled particle deposition in airways disease may be a sensitive indicator of physiologic changes in the lungs. Using planar gamma scintigraphy, we developed new methods to locate and quantify regions of high (hot) and low (cold) particle deposition in the lungs
Quantum Measurement Theory in Gravitational-Wave Detectors
The fast progress in improving the sensitivity of the gravitational-wave (GW)
detectors, we all have witnessed in the recent years, has propelled the
scientific community to the point, when quantum behaviour of such immense
measurement devices as kilometer-long interferometers starts to matter. The
time, when their sensitivity will be mainly limited by the quantum noise of
light is round the corner, and finding the ways to reduce it will become a
necessity. Therefore, the primary goal we pursued in this review was to
familiarize a broad spectrum of readers with the theory of quantum measurements
in the very form it finds application in the area of gravitational-wave
detection. We focus on how quantum noise arises in gravitational-wave
interferometers and what limitations it imposes on the achievable sensitivity.
We start from the very basic concepts and gradually advance to the general
linear quantum measurement theory and its application to the calculation of
quantum noise in the contemporary and planned interferometric detectors of
gravitational radiation of the first and second generation. Special attention
is paid to the concept of Standard Quantum Limit and the methods of its
surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in
Relativit
The next detectors for gravitational wave astronomy
This paper focuses on the next detectors for gravitational wave astronomy
which will be required after the current ground based detectors have completed
their initial observations, and probably achieved the first direct detection of
gravitational waves. The next detectors will need to have greater sensitivity,
while also enabling the world array of detectors to have improved angular
resolution to allow localisation of signal sources. Sect. 1 of this paper
begins by reviewing proposals for the next ground based detectors, and presents
an analysis of the sensitivity of an 8 km armlength detector, which is proposed
as a safe and cost-effective means to attain a 4-fold improvement in
sensitivity. The scientific benefits of creating a pair of such detectors in
China and Australia is emphasised. Sect. 2 of this paper discusses the high
performance suspension systems for test masses that will be an essential
component for future detectors, while sect. 3 discusses solutions to the
problem of Newtonian noise which arise from fluctuations in gravity gradient
forces acting on test masses. Such gravitational perturbations cannot be
shielded, and set limits to low frequency sensitivity unless measured and
suppressed. Sects. 4 and 5 address critical operational technologies that will
be ongoing issues in future detectors. Sect. 4 addresses the design of thermal
compensation systems needed in all high optical power interferometers operating
at room temperature. Parametric instability control is addressed in sect. 5.
Only recently proven to occur in Advanced LIGO, parametric instability
phenomenon brings both risks and opportunities for future detectors. The path
to future enhancements of detectors will come from quantum measurement
technologies. Sect. 6 focuses on the use of optomechanical devices for
obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum
measurement options
Three-Year Follow-Up Analysis of Axicabtagene Ciloleucel in Relapsed/Refractory Indolent Non-Hodgkin Lymphoma (Zuma-5)
Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for relapsed/refractory (R/R) follicular lymphoma (FL). Approval was supported by the phase 2, multicenter, single-arm ZUMA-5 study of axi-cel for patients with R/R indolent non-Hodgkin lymphoma (iNHL; N = 104), including FL and marginal zone lymphoma (MZL). In the primary analysis (median follow-up, 17.5 months), the overall response rate (ORR) was 92% (complete response rate, 74%). Here, we report long-term outcomes from ZUMA-5. Eligible patients with R/R iNHL after ≥2 lines of therapy underwent leukapheresis, followed by lymphodepleting chemotherapy and axi-cel infusion (2 × 106 CAR T cells per kg). The primary end point was ORR, assessed in this analysis by investigators in all enrolled patients (intent-to-treat). After median follow-up of 41.7 months in FL (n = 127) and 31.8 months in MZL (n = 31), ORR was comparable with that of the primary analysis (FL, 94%; MZL, 77%). Median progression-free survival was 40.2 months in FL and not reached in MZL. Medians of overall survival were not reached in either disease type. Grade ≥3 adverse events of interest that occurred after the prior analyses were largely in recently treated patients. Clinical and pharmacokinetic outcomes correlated negatively with recent exposure to bendamustine and high metabolic tumor volume. After 3 years of follow-up in ZUMA-5, axi-cel demonstrated continued durable responses, with very few relapses beyond 2 years, and manageable safety in patients with R/R iNHL. The ZUMA-5 study was registered at www.clinicaltrials.gov as #NCT03105336
A phase Ib trial of mivavotinib (TAK-659), a dual SYK/FLT3 inhibitor, in patients with relapsed/refractory acute myeloid leukemia
Mivavotinib (TAK-659) is an investigational type 1 tyrosine kinase inhibitor with dual activity against spleen tyrosine kinase (SYK) and FMS-like tyrosine kinase 3 (FLT3). We conducted a phase Ib study to investigate the safety, tolerability, and efficacy of mivavotinib in patients with refractory and/or relapsed (R/R) acute myeloid leukemia (AML). Both daily (QD) and twice daily (BID) dosing regimens were evaluated. A total of 43 patients were enrolled, and there were 5 complete responses (4 with incomplete count recovery). In the QD dosing regimen, the maximum tolerated dose (MTD) was not reached up to 160 mg QD per protocol; 140 mg QD was identified as the recommended phase II dose. In the BID dosing regimen, the MTD was 60 mg BID. Thirty patients (70%) experienced a bleeding event on study; the majority were grades 1 or 2, were resolved without mivavotinib modification, and were not considered related to study treatment. Eleven patients (26%) experienced grade ≥3 bleeding events, which were observed most frequently with the 80 mg BID dose. We conducted platelet aggregation studies to investigate the potential role of mivavotinib-mediated SYK inhibition on platelet function. The bleeding events observed may have been the result of several confounding factors, including AML disease status, associated thrombocytopenia, and high doses of mivavotinib. Overall, these findings indicate that the activity of mivavotinib in R/R AML is modest. Furthermore, any future clinical investigation of this agent should be undertaken with caution, particularly in thrombocytopenic patients, due to the potential bleeding risk of SYK inhibition. ClinicalTrials.gov: NCT02323113
Implications For The Origin Of GRB 051103 From LIGO Observations
We present the results of a LIGO search for gravitational waves (GWs)
associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst
(GRB) whose electromagnetically determined sky position is coincident with the
spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for
short-hard GRBs include compact object mergers and soft gamma repeater (SGR)
giant flares. A merger progenitor would produce a characteristic GW signal that
should be detectable at the distance of M81, while GW emission from an SGR is
not expected to be detectable at that distance. We found no evidence of a GW
signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission
with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81
as the progenitor with a confidence of 98%. Neutron star-black hole mergers are
excluded with > 99% confidence. If the event occurred in M81 our findings
support the the hypothesis that GRB 051103 was due to an SGR giant flare,
making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication,
go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see
the announcement for this paper on ligo.org at:
http://www.ligo.org/science/Publication-GRB051103/index.ph
- …