135 research outputs found
Imaging learned fear circuitry in awake mice using fMRI
Functional magnetic resonance imaging (fMRI) of learned behaviour in ‘awake rodents’ provides the opportunity for translational preclinical studies into the influence of pharmacological and genetic manipulations on brain function. fMRI has recently been employed to investigate learned behaviour in awake rats. Here, this methodology is translated to mice, so that future fMRI studies may exploit the vast number of genetically modified mouse lines that are available. One group of mice was conditioned to associate a flashing light (conditioned stimulus, CS) with foot shock (PG; paired group), and another group of mice received foot shock and flashing light explicitly unpaired (UG; unpaired group). The blood oxygen level-dependent signal (proxy for neuronal activation) in response to the CS was measured 24 h later in awake mice from the PG and UG using fMRI. The amygdala, implicated in fear processing, was activated to a greater degree in the PG than in the UG in response to the CS. Additionally, the nucleus accumbens was activated in the UG in response to the CS. Because the CS signalled an absence of foot shock in the UG, it is possible that this region is involved in processing the safety aspect of the CS. To conclude, the first use of fMRI to visualise brain activation in awake mice that are completing a learned emotional task is reported. This work paves the way for future preclinical fMRI studies to investigate genetic and environmental influences on brain function in transgenic mouse models of disease and aging
One-dimensional Particle Processes with Acceleration/Braking Asymmetry
The slow-to-start mechanism is known to play an important role in the
particular shape of the Fundamental diagram of traffic and to be associated to
hysteresis effects of traffic flow.We study this question in the context of
exclusion and queueing processes,by including an asymmetry between deceleration
and acceleration in the formulation of these processes. For exclusions
processes, this corresponds to a multi-class process with transition asymmetry
between different speed levels, while for queueing processes we consider
non-reversible stochastic dependency of the service rate w.r.t the number of
clients. The relationship between these 2 families of models is analyzed on the
ring geometry, along with their steady state properties. Spatial condensation
phenomena and metastability is observed, depending on the level of the
aforementioned asymmetry. In addition we provide a large deviation formulation
of the fundamental diagram (FD) which includes the level of fluctuations, in
the canonical ensemble when the stationary state is expressed as a product form
of such generalized queues.Comment: 28 pages, 8 figure
Recommended from our members
The effect of the apolipoprotein E genotype on response to personalized dietary advice intervention: findings from the Food4Me randomized controlled trial
Background: The apolipoprotein E (APOE) risk allele (ɛ4) is associated with higher total cholesterol (TC), amplified response to saturated fatty acid (SFA) reduction, and increased cardiovascular disease. Although knowledge of gene risk may enhance dietary change, it is unclear whether ɛ4 carriers would benefit from gene-based personalized nutrition (PN).
Objectives: The aims of this study were to 1) investigate interactions between APOE genotype and habitual dietary fat intake and modulations of fat intake on metabolic outcomes; 2) determine whether gene-based PN results in greater dietary change than do standard dietary advice (level 0) and nongene-based PN (levels 1–2); and 3) assess the impact of knowledge of APOE risk (risk: E4+, nonrisk: E4−) on dietary change after gene-based PN (level 3).
Design: Individuals (n = 1466) recruited into the Food4Me pan-European PN dietary intervention study were randomly assigned to 4 treatment arms and genotyped for APOE (rs429358 and rs7412). Diet and dried blood spot TC and ω-3 (n–3) index were determined at baseline and after a 6-mo intervention. Data were analyzed with the use of adjusted general linear models.
Results: Significantly higher TC concentrations were observed in E4+ participants than in E4− (P < 0.05). Although there were no significant differences in APOE response to gene-based PN (E4+ compared with E4−), both groups had a greater reduction in SFA (percentage of total energy) intake than at level 0 (mean ± SD: E4+, −0.72% ± 0.35% compared with −1.95% ± 0.45%, P = 0.035; E4−, −0.31% ± 0.20% compared with −1.68% ± 0.35%, P = 0.029). Gene-based PN was associated with a smaller reduction in SFA intake than in nongene-based PN (level 2) for E4− participants (−1.68% ± 0.35% compared with −2.56% ± 0.27%, P = 0.025).
Conclusions: The APOE ɛ4 allele was associated with higher TC. Although gene-based PN targeted to APOE was more effective in reducing SFA intake than standard dietary advice, there was no difference between APOE “risk” and “nonrisk” groups. Furthermore, disclosure of APOE nonrisk may have weakened dietary response to PN
The global network: a prospective study of stillbirths in developing countries
Our goal was to determine stillbirth rates in a multi-site population-based study in community settings in the developing world
Influence of ARHGEF3 and RHOA Knockdown on ACTA2 and Other Genes in Osteoblasts and Osteoclasts
Osteoporosis is a common bone disease that has a strong genetic component. Genome-wide linkage studies have identified the chromosomal region 3p14-p22 as a quantitative trait locus for bone mineral density (BMD). We have previously identified associations between variation in two related genes located in 3p14-p22, ARHGEF3 and RHOA, and BMD in women. In this study we performed knockdown of these genes using small interfering RNA (siRNA) in human osteoblast-like and osteoclast-like cells in culture, with subsequent microarray analysis to identify genes differentially regulated from a list of 264 candidate genes. Validation of selected findings was then carried out in additional human cell lines/cultures using quantitative real-time PCR (qRT-PCR). The qRT-PCR results showed significant down-regulation of the ACTA2 gene, encoding the cytoskeletal protein alpha 2 actin, in response to RHOA knockdown in both osteoblast-like (P<0.001) and osteoclast-like cells (P = 0.002). RHOA knockdown also caused up-regulation of the PTH1R gene, encoding the parathyroid hormone 1 receptor, in Saos-2 osteoblast-like cells (P<0.001). Other findings included down-regulation of the TNFRSF11B gene, encoding osteoprotegerin, in response to ARHGEF3 knockdown in the Saos-2 and hFOB 1.19 osteoblast-like cells (P = 0.003– 0.02), and down-regulation of ARHGDIA, encoding the Rho GDP dissociation inhibitor alpha, in response to RHOA knockdown in osteoclast-like cells (P<0.001). These studies identify ARHGEF3 and RHOA as potential regulators of a number of genes in bone cells, including TNFRSF11B, ARHGDIA, PTH1R and ACTA2, with influences on the latter evident in both osteoblast-like and osteoclast-like cells. This adds further evidence to previous studies suggesting a role for the ARHGEF3 and RHOA genes in bone metabolism
Empirical Legal Studies Before 1940: A Bibliographic Essay
The modern empirical legal studies movement has well-known antecedents in the law and society and law and economics traditions of the latter half of the 20th century. Less well known is the body of empirical research on legal phenomena from the period prior to World War II. This paper is an extensive bibliographic essay that surveys the English language empirical legal research from approximately 1940 and earlier. The essay is arranged around the themes in the research: criminal justice, civil justice (general studies of civil litigation, auto accident litigation and compensation, divorce, small claims, jurisdiction and procedure, civil juries), debt and bankruptcy, banking, appellate courts, legal needs, legal profession (including legal education), and judicial staffing and selection. Accompanying the essay is an extensive bibliography of research articles, books, and reports
Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala
The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
Psychosocial impact of undergoing prostate cancer screening for men with BRCA1 or BRCA2 mutations.
OBJECTIVES: To report the baseline results of a longitudinal psychosocial study that forms part of the IMPACT study, a multi-national investigation of targeted prostate cancer (PCa) screening among men with a known pathogenic germline mutation in the BRCA1 or BRCA2 genes. PARTICPANTS AND METHODS: Men enrolled in the IMPACT study were invited to complete a questionnaire at collaborating sites prior to each annual screening visit. The questionnaire included sociodemographic characteristics and the following measures: the Hospital Anxiety and Depression Scale (HADS), Impact of Event Scale (IES), 36-item short-form health survey (SF-36), Memorial Anxiety Scale for Prostate Cancer, Cancer Worry Scale-Revised, risk perception and knowledge. The results of the baseline questionnaire are presented. RESULTS: A total of 432 men completed questionnaires: 98 and 160 had mutations in BRCA1 and BRCA2 genes, respectively, and 174 were controls (familial mutation negative). Participants' perception of PCa risk was influenced by genetic status. Knowledge levels were high and unrelated to genetic status. Mean scores for the HADS and SF-36 were within reported general population norms and mean IES scores were within normal range. IES mean intrusion and avoidance scores were significantly higher in BRCA1/BRCA2 carriers than in controls and were higher in men with increased PCa risk perception. At the multivariate level, risk perception contributed more significantly to variance in IES scores than genetic status. CONCLUSION: This is the first study to report the psychosocial profile of men with BRCA1/BRCA2 mutations undergoing PCa screening. No clinically concerning levels of general or cancer-specific distress or poor quality of life were detected in the cohort as a whole. A small subset of participants reported higher levels of distress, suggesting the need for healthcare professionals offering PCa screening to identify these risk factors and offer additional information and support to men seeking PCa screening
- …