4,323 research outputs found
Black hole collapse simulated by vacuum fluctuations with a moving semi-transparent mirror
Creation of scalar massless particles in two-dimensional Minkowski
space-time--as predicted by the dynamical Casimir effect--is studied for the
case of a semitransparent mirror initially at rest, then accelerating for some
finite time, along a trajectory that simulates a black hole collapse (defined
by Walker, and Carlitz and Willey), and finally moving with constant velocity.
When the reflection and transmission coefficients are those in the model
proposed by Barton, Calogeracos, and Nicolaevici [r(w)=-i\alpha/(\w+i\alpha)
and s(w)=\w/(\w+i\alpha), with ], the Bogoliubov coefficients
on the back side of the mirror can be computed exactly. This allows us to prove
that, when is very large (case of an ideal, perfectly reflecting
mirror) a thermal emission of scalar massless particles obeying Bose-Einstein
statistics is radiated from the mirror (a black body radiation), in accordance
with results previously obtained in the literature. However, when is
finite (semitransparent mirror, a physically realistic situation) the striking
result is obtained that the thermal emission of scalar massless particles obeys
Fermi-Dirac statistics. We also show here that the reverse change of statistics
takes place in a bidimensional fermionic model for massless particles, namely
that the Fermi-Dirac statistics for the completely reflecting situation will
turn into the Bose-Einstein statistics for a partially reflecting, physical
mirror.Comment: 13 pages, no figures, version to appear in Physical Review
Equation of state of a seven-dimensional hard-sphere fluid. Percus-Yevick theory and molecular dynamics simulations
Following the work of Leutheusser [Physica A 127, 667 (1984)], the solution
to the Percus-Yevick equation for a seven-dimensional hard-sphere fluid is
explicitly found. This allows the derivation of the equation of state for the
fluid taking both the virial and the compressibility routes. An analysis of the
virial coefficients and the determination of the radius of convergence of the
virial series are carried out. Molecular dynamics simulations of the same
system are also performed and a comparison between the simulation results for
the compressibility factor and theoretical expressions for the same quantity is
presented.Comment: 12 pages, 4 figures; v3: Equation (A.19) corrected (see
http://dx.doi.org/10.1063/1.2390712
Simple equation of state for hard disks on the hyperbolic plane
A simple equation of state for hard disks on the hyperbolic plane is
proposed. It yields the exact second virial coefficient and contains a pole at
the highest possible packing. A comparison with another very recent theoretical
proposal and simulation data is presented.Comment: 3 pages, 1 figur
Teleparallel loop quantum cosmology in a system of intersecting branes
Recently, some authors have removed the big bang singularity in teleparallel
Loop Quantum Cosmology (LQC) and have shown that the universe may undergo a
number of oscillations. We investigate the origin of this type of teleparallel
theory in a system of intersecting branes in M-theory in which the angle
between them changes with time. This system is constructed by two intersecting
anti-D8-branes, one compacted D4-brane and the other a D3-brane. These branes
are built by joining M0-branes which develop in decaying fundamental strings.
The compacted D4-brane is located between two intersecting anti-D8 branes and
glues to one of them. Our universe is located on the D3 brane which wraps the
D4 brane from one end and sticks to one of the anti-D8 branes from another one.
In this system, there are three types of fields, corresponding to compacted D4
branes, intersecting branes and D3-branes. These fields interact with each
other and make the angle between branes oscillate. By decreasing this angle and
approaching the intersecting anti-D8 branes towards each other, the D4 brane
rolls, the D3 brane wraps around the D4 brane, and t he universe contracts. By
separating the intersecting branes and increasing the angle, the D4 brane rolls
in the opposite direction, the D3 brane separates from it and the expansion
branch begins. Also, the interaction between branes in this system gives us the
exact form of the relevant Lagrangian for teleparallel LQC.Comment: 11 page
Qualitative study in Loop Quantum Cosmology
This work contains a detailed qualitative analysis, in General Relativity and
in Loop Quantum Cosmology, of the dynamics in the associated phase space of a
scalar field minimally coupled with gravity, whose potential mimics the
dynamics of a perfect fluid with a linear Equation of State (EoS). Dealing with
the orbits (solutions) of the system, we will see that there are analytic ones,
which lead to the same dynamics as the perfect fluid, and our goal is to check
their stability, depending on the value of the EoS parameter, i.e., to show
whether the other orbits converge or diverge to these analytic solutions at
early and late times.Comment: 12 pages, 7 figures. Version accepted for publication in CQ
On the radial distribution function of a hard-sphere fluid
Two related approaches, one fairly recent [A. Trokhymchuk et al., J. Chem.
Phys. 123, 024501 (2005)] and the other one introduced fifteen years ago [S. B.
Yuste and A. Santos, Phys. Rev. A 43, 5418 (1991)], for the derivation of
analytical forms of the radial distribution function of a fluid of hard spheres
are compared. While they share similar starting philosophy, the first one
involves the determination of eleven parameters while the second is a simple
extension of the solution of the Percus-Yevick equation. It is found that the
{second} approach has a better global accuracy and the further asset of
counting already with a successful generalization to mixtures of hard spheres
and other related systems.Comment: 3 pages, 1 figure; v2: slightly shortened, figure changed, to be
published in JC
- …