21 research outputs found
Quark Effects in the Gluon Condensate Contribution to the Scalar Glueball Correlation Function
One-loop quark contributions to the dimension-four gluon condensate term in
the operator product expansion (OPE) of the scalar glueball correlation
function are calculated in the MS-bar scheme in the chiral limit of quark
flavours. The presence of quark effects is shown not to alter the cancellation
of infrared (IR) singularities in the gluon condensate OPE coefficients. The
dimension-four gluonic condensate term represents the leading power corrections
to the scalar glueball correlator and, therein, the one-loop logarithmic
contributions provide the most important condensate contribution to those QCD
sum-rules independent of the low-energy theorem (the subtracted sum-rules).Comment: latex2e, 6 pages, 7 figures embedded in latex fil
Couplings of light I=0 scalar mesons to simple operators in the complex plane
The flavour and glue structure of the light scalar mesons in QCD are probed
by studying the couplings of the I=0 mesons and to the
operators , and to two photons. The Roy dispersive
representation for the amplitude is used to determine the
pole positions as well as the residues in the complex plane. On the real axis,
is constrained to solve the Roy equation together with elastic
unitarity up to the K\Kbar threshold leading to an improved description of
the . The problem of using a two-particle threshold as a matching
point is discussed. A simple relation is established between the coupling of a
scalar meson to an operator and the value of the related pion form-factor
computed at the resonance pole. Pion scalar form-factors as well as two-photon
partial-wave amplitudes are expressed as coupled-channel Omn\`es dispersive
representations. Subtraction constants are constrained by chiral symmetry and
experimental data. Comparison of our results for the couplings with
earlier determinations of the analogous couplings of the lightest I=1 and
scalar mesons are compatible with an assignment of the ,
, , into a nonet. Concerning the gluonic operator
we find a significant coupling to both the and the
.Comment: 31 pages, 5 figure
Differential polarisation of immune responses by plant 2S seed albumins, Ber e 1 and SFA8
The plant 2S seed albumins Ber e 1 and SFA8, although structurally very similar, vary with respect to their allergenic properties. Whereas the former represents a major allergen, the latter appears to promote only weak allergenic responses. The aim of this investigation was to determine whether the allergenic properties of Ber e 1 and SFA8 reflected differential polarization of dendritic cell (DC) and Th cell responses. We thus investigated the effect of recombinant forms of both allergens on DC and Th cell responses as indicated by cell surface phenotype and cytokine production. Exposure of murine DCs to SFA8, but not Ber e 1, resulted in production of the cytokines IL-12 p40 and TNF-{alpha} by a mechanism independent of recognition by TLRs. Furthermore, depending on the mouse strain used, increased expression of MHC class II and costimulatory molecules such as CD40, CD80, and CD86 was associated with exposure to SFA8, but not Ber e 1. In coculture experiments using the DO11.10 transgenic T cell that recognizes OVA peptide, DCs exposed to both allergens induced T cells to produce IFN-{gamma}, but only Ber e 1 could induce significant production of IL-4 and IL-5. Likewise, analysis of transcription factors shows increased T-bet with respect to both allergens, but also GATA-3 with respect to Ber e 1. Overall, our data are consistent with the idea that the ability of Ber e 1, but not SFA8, to act as a potent allergen may reflect differences in their ability to induce IL-12 production
The phosphorycholine moiety of the filarial nematode immunomodulator ES-62 is responsible for its anti-inflammatory action in arthritis
In countries where parasitic infections are endemic, autoimmune disease is relatively rare, leading to the hypothesis that parasite-derived immunomodulators may protect against its development. Consistent with this, we have previously demonstrated that ES-62, a 62 kDa phosphorylcholine (PC)-containing glycoprotein that is secreted by filarial nematodes, can exert anti-inflammatory action in the murine collagen-induced arthritis (CIA) model and human rheumatoid arthritis-derived synovial tissue cultures. As a first step to developing ES-62-based drugs, the aim of this study was to determine whether the PC-moiety of ES-62 was responsible for its anti-inflammatory actions. We compared the anti-inflammatory activity of a PC-free form of recombinant ES-62 (rES-62) and a synthetic PC-ovalbumin conjugate (OVA-PC) with that of native ES-62 in the CIA model and synovial tissues from patients with rheumatoid arthritis. Results: The anti-inflammatory actions of ES-62 in CIA appear to be dependent on the PC moiety as indicated by the reduction in severity of disease and also suppression of collagen-specific T helper 1 cytokine production observed when testing OVA-PC, but not rES-62. Interestingly, the anti-inflammatory activity of PC did not correlate with a reduction in anti-collagen IgG2a levels. Also, the ES-62-mediated suppression of interferon- from human patient tissues could be mimicked by OVA-PC but not rES-62 or ovalbumin. In countries where filariasis is endemic the reduced detection of inflammatory diseases, such as rheumatoid arthritis may be because of the anti-inflammatory action of the PC moieties of ES-62. PC may thus provide the starting point for the development of novel, safe immunomodulatory therapies