4,153 research outputs found

    Growing Hair on the extremal BTZBTZ black hole

    Full text link
    We show that the nonlinear σ−\sigma-model in an asymptotically AdS3AdS_3 space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear σ−\sigma-model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear σ−\sigma-model fields and changes the space-time metric, and it can be used to map an extremal BTZBTZ black hole to infinitely many hairy black hole solutions.Comment: 11 pages, 1 figure, minor corrections include

    Perturbations in the Kerr-Newman Dilatonic Black Hole Background: I. Maxwell waves

    Get PDF
    In this paper we analyze the perturbations of the Kerr-Newman dilatonic black hole background. For this purpose we perform a double expansion in both the background electric charge and the wave parameters of the relevant quantities in the Newman-Penrose formalism. We then display the gravitational, dilatonic and electromagnetic equations, which reproduce the static solution (at zero order in the wave parameter) and the corresponding wave equations in the Kerr background (at first order in the wave parameter and zero order in the electric charge). At higher orders in the electric charge one encounters corrections to the propagations of waves induced by the presence of a non-vanishing dilaton. An explicit computation is carried out for the electromagnetic waves up to the asymptotic form of the Maxwell field perturbations produced by the interaction with dilatonic waves. A simple physical model is proposed which could make these perturbations relevant to the detection of radiation coming from the region of space near a black hole.Comment: RevTeX, 36 pages in preprint style, 1 figure posted as a separate PS file, submitted to Phys. Rev.

    New perturbative solutions of the Kerr-Newman dilatonic black hole field equations

    Get PDF
    This work describes new perturbative solutions to the classical, four-dimensional Kerr--Newman dilaton black hole field equations. Our solutions do not require the black hole to be slowly rotating. The unperturbed solution is taken to be the ordinary Kerr solution, and the perturbation parameter is effectively the square of the charge-to-mass ratio (Q/M)2(Q/M)^2 of the Kerr--Newman black hole. We have uncovered a new, exact conjugation (mirror) symmetry for the theory, which maps the small coupling sector to the strong coupling sector (ϕ→−ϕ\phi \to -\phi). We also calculate the gyromagnetic ratio of the black hole.Comment: Revtex, 27 page

    Microfield Dynamics of Black Holes

    Full text link
    The microcanonical treatment of black holes as opposed to the canonical formulation is reviewed and some major differences are displayed. In particular the decay rates are compared in the two different pictures.Comment: 22 pages, 4 figures, Revtex, Minor change in forma

    Can black holes and naked singularities be detected in accelerators?

    Get PDF
    We study the conditions for the existence of black holes that can be produced in colliders at TeV-scale if the space-time is higher dimensional. On employing the microcanonical picture, we find that their life-times strongly depend on the details of the model. If the extra dimensions are compact (ADD model), microcanonical deviations from thermality are in general significant near the fundamental TeV mass and tiny black holes decay more slowly than predicted by the canonical expression, but still fast enough to disappear almost instantaneously. However, with one warped extra dimension (RS model), microcanonical corrections are much larger and tiny black holes appear to be (meta)stable. Further, if the total charge is not zero, we argue that naked singularities do not occur provided the electromagnetic field is strictly confined on an infinitely thin brane. However, they might be produced in colliders if the effective thickness of the brane is of the order of the fundamental length scale (~1/TeV).Comment: 6 pages, RevTeX 3, 1 figure and 1 table, important changes and addition

    Noncommutative Quantum Hall Effect and Aharonov-Bohm Effect

    Full text link
    We study a system of electrons moving on a noncommutative plane in the presence of an external magnetic field which is perpendicular to this plane. For generality we assume that the coordinates and the momenta are both noncommutative. We make a transformation from the noncommutative coordinates to a set of commuting coordinates and then we write the Hamiltonian for this system. The energy spectrum and the expectation value of the current can then be calculated and the Hall conductivity can be extracted. We use the same method to calculate the phase shift for the Aharonov-Bohm effect. Precession measurements could allow strong upper limits to be imposed on the noncommutativity coordinate and momentum parameters Θ\Theta and Ξ\Xi.Comment: 9 pages, RevTeX4, references added, small changes in the tex

    Utilizing the null stream of Einstein Telescope

    Get PDF
    Among third-generation ground-based gravitational-wave detectors proposed for the next decade, Einstein Telescope provides a unique kind of null stream \unicode{x2014} the signal-free linear combination of data \unicode{x2014} that enables otherwise inaccessible tests of the noise models. We project and showcase challenges in modeling the noise in the 2030-s and how it will affect the performance of third-generation detectors. We find that the null stream of Einstein Telescope is capable of entirely eliminating transient detector glitches that are known to limit current gravitational-wave searches. The techniques we discuss are computationally efficient and do not require a-priori knowledge about glitch models. Furthermore, we show how the null stream can be used to provide an unbiased estimation of the noise power spectrum necessary for online and offline data analyses even with multiple loud signals in band. We overview other approaches to utilizing the null stream. Finally, we comment on the limitations and future challenges of null stream analyses for Einstein Telescope and arbitrary detector networks

    Noncommutative Corrections to the Robertson-Walker metric

    Full text link
    Upon applying Chamseddine's noncommutative deformation of gravity we obtain the leading order noncommutative corrections to the Robertson-Walker metric tensor. We get an isotropic inhomogeneous metric tensor for a certain choice of the noncommutativity parameters. Moreover, the singularity of the commutative metric at t=0t=0 is replaced by a more involved space-time structure in the noncommutative theory. In a toy model we construct a scenario where there is no singularity at t=0t=0 at leading order in the noncommutativity parameter. Although singularities may still be present for nonzero tt, they need not be the source of all time-like geodesics and the result resembles a bouncing cosmology.Comment: 13 page

    Theoretical survey of tidal-charged black holes at the LHC

    Full text link
    We analyse a family of brane-world black holes which solve the effective four-dimensional Einstein equations for a wide range of parameters related to the unknown bulk/brane physics. We first constrain the parameters using known experimental bounds and, for the allowed cases, perform a numerical analysis of their time evolution, which includes accretion through the Earth. The study is aimed at predicting the typical behavior one can expect if such black holes were produced at the LHC. Most notably, we find that, under no circumstances, would the black holes reach the (hazardous) regime of Bondi accretion. Nonetheless, the possibility remains that black holes live long enough to escape from the accelerator (and even from the Earth's gravitational field) and result in missing energy from the detectors.Comment: RevTeX4, 12 pages, 4 figures, 5 tables, minor changes to match the accepted version in JHE
    • 

    corecore