14 research outputs found

    The beta Pictoris association: Catalog of photometric rotational periods of low-mass members and candidate members

    Get PDF
    We intended to compile the most complete catalog of bona fide members and candidate members of the beta Pictoris association, and to measure their rotation periods and basic properties from our own observations, public archives, and exploring the literature. We carried out a multi-observatories campaign to get our own photometric time series and collected all archived public photometric data time series for the stars in our catalog. Each time series was analyzed with the Lomb-Scargle and CLEAN periodograms to search for the stellar rotation periods. We complemented the measured rotational properties with detailed information on multiplicity, membership, and projected rotational velocity available in the literature and discussed star by star. We measured the rotation periods of 112 out of 117 among bona fide members and candidate members of the beta Pictoris association and, whenever possible, we also measured the luminosity, radius, and inclination of the stellar rotation axis. This represents to date the largest catalog of rotation periods of any young loose stellar association. We provided an extensive catalog of rotation periods together with other relevant basic properties useful to explore a number of open issues, such as the causes of spread of rotation periods among coeval stars, evolution of angular momentum, and lithium-rotation connection.Comment: Forthcoming article, Received: 20 June 2016 / Accepted: 09 September 2016; 40 pages, 2 figures. The online figures A1-A73 are available at CD

    High-precision polarimetry of nearby stars (d < 50 pc): Mapping the interstellar dust and magnetic field inside the Local Bubble

    Get PDF
    Context. We investigate the linear polarization produced by interstellar dust aligned by the magnetic field in the solar neighborhood (d Aims. We aim to detect and map dust clouds which give rise to statistically significant amounts of polarization of the starlight passing through the cloud, and to determine the interstellar magnetic field direction from the position angle of the observed polarization.Methods. High-precision broad-band (BV R) polarization observations are made of 361 stars in spectral classes F to G, with detection sensitivity at the level of or better than 10(-5) (0.001%). The sample consists of 125 stars in the magnitude range 6-9 observed at the 2.2 m UH88 telescope on Mauna Kea, 205 stars in the magnitude range 3-6 observed at the Japanese (Tohoku) T60 telescope on Haleakala, and 31 stars in the magnitude range 4-7 observed at the 1.27 m H127 telescope of the Greenhill Observatory, Tasmania. Identical copies of the Dipol-2 polarimeter are used on these three sites.Results. Statistically significant (>3 sigma) polarization is found in 115 stars, and >2 sigma detection in 178 stars, out of the total sample of 361 stars. Polarization maps based on these data show filament-like patterns of polarization position angles, which are related to both the heliosphere geometry, the kinematics of nearby clouds, and the Interstellar Boundary EXplorer ribbon magnetic field. From long-term multiple observations, a number (20) of stars show evidence of intrinsic variability at the 10(-5) level. This can be attributed to circumstellar effects (e.g., debris disks and chromospheric activity). The star HD 101805 shows a peculiar wavelength dependence, indicating size distribution of scattering particles different from that of a typical interstellar medium. Our high signal-to-noise measurements of nearby stars with very low polarization also provide a useful dataset for calibration purposes.</p

    Whence the interstellar magnetic field shaping the heliosphere?

    Get PDF
    Measurements of starlight polarized by aligned interstellar dust grains are used to probe the relation between the orientation of the ambient interstellar magnetic field (ISMF) and the ISMF traced by the ribbons of energetic neutral atoms discovered by the Interstellar Boundary Explorer spacecraft. We utilize polarization data, many acquired specifically for this study, to trace the configuration of the ISMF within 40 pc. A statistical analysis yields a best-fit ISMF orientation, B (magpol), aligned with Galactic coordinates l = 42 degrees, b = 49 degrees. Further analysis shows the ISMF is more orderly for "downfield" stars located over 90 degrees from B (magpol). The data subset of downfield stars yields an orientation for the nearby ISMF at ecliptic coordinates lambda, beta approximate to 219 degrees +/- 15 degrees, 43 degrees +/- 9 degrees (Galactic coordinates l, b approximate to 40 degrees, 56 degrees, +/- 17 degrees). This best-fit ISMF orientation from polarization data is close to the field direction obtained from ribbon models. This agreement suggests that the ISMF shaping the heliosphere belongs to an extended ordered magnetic field. Extended filamentary structures are found throughout the sky. A previously discovered filament traversing the heliosphere nose region, "Filament A," extends over 300 degrees of the sky, and crosses the upwind direction of interstellar dust flowing into the heliosphere. Filament A overlaps the locations of the Voyager kilohertz emissions, three quasar intraday variables, cosmic microwave background (CMB) components, and the inflow direction of interstellar grains sampled by Ulysses and Galileo. These features are likely located in the upstream outer heliosheath where ISMF drapes over the heliosphere, suggesting Filament A coincides with a dusty magnetized plasma. A filament 55 degrees long is aligned with a possible shock interface between local interstellar clouds. A dark spot in the CMB is seen within 5 degrees of the filament and within 10 degrees of the downfield ISMF direction. Two large magnetic arcs are centered on the directions of the heliotail. The overlap between CMB components and the aligned dust grains forming Filament A indicates the configuration of dust entrained in the ISMF interacting with the heliosphere provides a measurable foreground to the CMB

    Whence the Interstellar Magnetic Field Shaping the Heliosphere?

    Get PDF
    Measurements of starlight polarized by aligned interstellar dust grains are used to probe the relation between the orientation of the ambient interstellar magnetic field (ISMF) and the ISMF traced by the ribbons of energetic neutral atoms discovered by the Interstellar Boundary Explorer spacecraft. We utilize polarization data, many acquired specifically for this study, to trace the configuration of the ISMF within 40 pc. A statistical analysis yields a best-fit ISMF orientation, B (magpol), aligned with Galactic coordinates l = 42 degrees, b = 49 degrees. Further analysis shows the ISMF is more orderly for "downfield" stars located over 90 degrees from B (magpol). The data subset of downfield stars yields an orientation for the nearby ISMF at ecliptic coordinates lambda, beta approximate to 219 degrees +/- 15 degrees, 43 degrees +/- 9 degrees (Galactic coordinates l, b approximate to 40 degrees, 56 degrees, +/- 17 degrees). This best-fit ISMF orientation from polarization data is close to the field direction obtained from ribbon models. This agreement suggests that the ISMF shaping the heliosphere belongs to an extended ordered magnetic field. Extended filamentary structures are found throughout the sky. A previously discovered filament traversing the heliosphere nose region, "Filament A," extends over 300 degrees of the sky, and crosses the upwind direction of interstellar dust flowing into the heliosphere. Filament A overlaps the locations of the Voyager kilohertz emissions, three quasar intraday variables, cosmic microwave background (CMB) components, and the inflow direction of interstellar grains sampled by Ulysses and Galileo. These features are likely located in the upstream outer heliosheath where ISMF drapes over the heliosphere, suggesting Filament A coincides with a dusty magnetized plasma. A filament 55 degrees long is aligned with a possible shock interface between local interstellar clouds. A dark spot in the CMB is seen within 5 degrees of the filament and within 10 degrees of the downfield ISMF direction. Two large magnetic arcs are centered on the directions of the heliotail. The overlap between CMB components and the aligned dust grains forming Filament A indicates the configuration of dust entrained in the ISMF interacting with the heliosphere provides a measurable foreground to the CMB

    Survey of period variations of superhumps in SU UMa-type dwarf novae. VI. The sixth year (2013-2014)

    Get PDF
    © The Author 2014. Published by Oxford University Press on behalf of the Astronomical Society of Japan. All rights reserved. Continuing the project undertaken by Kato et al. (2009), we collected times of superhump maxima for 56 SU UMa-type dwarf novae mainly observed during the 2013-2014 season and characterized these objects. We detected negative superhumps in VW Hyi and indicated that the low number of normal outbursts in some supercycles can be interpreted as a result of disk tilt. This finding, combined with the Kepler observation of V1504 Cyg and V344 Lyr, suggests that disk tilt is responsible for modulating the outburst pattern in SU UMa-type dwarf novae. We also studied the deeply eclipsing WZ Sge-type dwarf nova MASTER OT J005740.99+443101.5 and found evidence of a sharp eclipse during the phase of early superhumps. The profile can be reproduced by a combination of the eclipse of the axisymmetric disk and the uneclipsed light source of early superhumps. This finding shows the lack of evidence for a greatly enhanced hot spot during the early stage of WZ Sge-type outburst. We detected growing (stage A) superhumps in MN Dra and give a suggestion that some of SU UMa-type dwarf novae situated near the critical condition of tidal instability may show long-lasting stage A superhumps. The large negative period derivatives reported in such systems can be understood as a result of the combination of stage A and B superhumps. Two WZ Sge-type dwarf novae, AL Com and ASASSN-13ck, showed a long-lasting (plateau-type) rebrightening. In the early phase of their rebrightenings, both objects showed a precursor-like outburst, suggesting that the long-lasting rebrightening is triggered by a precursor outburst

    Survey of period variations of superhumps in SU UMa-type dwarf novae. VI. The sixth year (2013-2014)

    No full text
    © The Author 2014. Published by Oxford University Press on behalf of the Astronomical Society of Japan. All rights reserved. Continuing the project undertaken by Kato et al. (2009), we collected times of superhump maxima for 56 SU UMa-type dwarf novae mainly observed during the 2013-2014 season and characterized these objects. We detected negative superhumps in VW Hyi and indicated that the low number of normal outbursts in some supercycles can be interpreted as a result of disk tilt. This finding, combined with the Kepler observation of V1504 Cyg and V344 Lyr, suggests that disk tilt is responsible for modulating the outburst pattern in SU UMa-type dwarf novae. We also studied the deeply eclipsing WZ Sge-type dwarf nova MASTER OT J005740.99+443101.5 and found evidence of a sharp eclipse during the phase of early superhumps. The profile can be reproduced by a combination of the eclipse of the axisymmetric disk and the uneclipsed light source of early superhumps. This finding shows the lack of evidence for a greatly enhanced hot spot during the early stage of WZ Sge-type outburst. We detected growing (stage A) superhumps in MN Dra and give a suggestion that some of SU UMa-type dwarf novae situated near the critical condition of tidal instability may show long-lasting stage A superhumps. The large negative period derivatives reported in such systems can be understood as a result of the combination of stage A and B superhumps. Two WZ Sge-type dwarf novae, AL Com and ASASSN-13ck, showed a long-lasting (plateau-type) rebrightening. In the early phase of their rebrightenings, both objects showed a precursor-like outburst, suggesting that the long-lasting rebrightening is triggered by a precursor outburst

    Survey of period variations of superhumps in SU UMa-type dwarf novae. VI. The sixth year (2013-2014)

    Get PDF
    © The Author 2014. Published by Oxford University Press on behalf of the Astronomical Society of Japan. All rights reserved. Continuing the project undertaken by Kato et al. (2009), we collected times of superhump maxima for 56 SU UMa-type dwarf novae mainly observed during the 2013-2014 season and characterized these objects. We detected negative superhumps in VW Hyi and indicated that the low number of normal outbursts in some supercycles can be interpreted as a result of disk tilt. This finding, combined with the Kepler observation of V1504 Cyg and V344 Lyr, suggests that disk tilt is responsible for modulating the outburst pattern in SU UMa-type dwarf novae. We also studied the deeply eclipsing WZ Sge-type dwarf nova MASTER OT J005740.99+443101.5 and found evidence of a sharp eclipse during the phase of early superhumps. The profile can be reproduced by a combination of the eclipse of the axisymmetric disk and the uneclipsed light source of early superhumps. This finding shows the lack of evidence for a greatly enhanced hot spot during the early stage of WZ Sge-type outburst. We detected growing (stage A) superhumps in MN Dra and give a suggestion that some of SU UMa-type dwarf novae situated near the critical condition of tidal instability may show long-lasting stage A superhumps. The large negative period derivatives reported in such systems can be understood as a result of the combination of stage A and B superhumps. Two WZ Sge-type dwarf novae, AL Com and ASASSN-13ck, showed a long-lasting (plateau-type) rebrightening. In the early phase of their rebrightenings, both objects showed a precursor-like outburst, suggesting that the long-lasting rebrightening is triggered by a precursor outburst

    Survey of period variations of superhumps in SU UMa-type dwarf novae. VI. The sixth year (2013-2014)

    No full text
    © The Author 2014. Published by Oxford University Press on behalf of the Astronomical Society of Japan. All rights reserved. Continuing the project undertaken by Kato et al. (2009), we collected times of superhump maxima for 56 SU UMa-type dwarf novae mainly observed during the 2013-2014 season and characterized these objects. We detected negative superhumps in VW Hyi and indicated that the low number of normal outbursts in some supercycles can be interpreted as a result of disk tilt. This finding, combined with the Kepler observation of V1504 Cyg and V344 Lyr, suggests that disk tilt is responsible for modulating the outburst pattern in SU UMa-type dwarf novae. We also studied the deeply eclipsing WZ Sge-type dwarf nova MASTER OT J005740.99+443101.5 and found evidence of a sharp eclipse during the phase of early superhumps. The profile can be reproduced by a combination of the eclipse of the axisymmetric disk and the uneclipsed light source of early superhumps. This finding shows the lack of evidence for a greatly enhanced hot spot during the early stage of WZ Sge-type outburst. We detected growing (stage A) superhumps in MN Dra and give a suggestion that some of SU UMa-type dwarf novae situated near the critical condition of tidal instability may show long-lasting stage A superhumps. The large negative period derivatives reported in such systems can be understood as a result of the combination of stage A and B superhumps. Two WZ Sge-type dwarf novae, AL Com and ASASSN-13ck, showed a long-lasting (plateau-type) rebrightening. In the early phase of their rebrightenings, both objects showed a precursor-like outburst, suggesting that the long-lasting rebrightening is triggered by a precursor outburst
    corecore