11 research outputs found
Safety and efficacy of hydrothermal duodenal mucosal resurfacing in patients with type 2 diabetes: the randomised, double-blind, sham-controlled, multicentre REVITA-2 feasibility trial
Objective: Hydrothermal duodenal mucosal resurfacing (DMR) is a safe, outpatient endoscopic procedure. REVITA-2, a double-blind, superiority RCT, investigates safety and efficacy of DMR using the single catheter Revita system (Revita DMR [catheter and system], on glycaemic control and liver fat content in Type 2 Diabetes (T2D).Design: Eligible patients (HbA1c 59–86mmol/mol, BMI ≥24 and ≤40kg/m2, fasting insulin >48.6pmol/L, ≥1 oral antidiabetic medication) enrolled in Europe and Brazil. Primary endpoints were safety, change from baseline in HbA1c at 24 weeks, and liver magnetic resonance imaging proton-density fat fraction (MRI-PDFF) at 12 weeks. Results: Overall mITT (DMR N=56; sham N=52), 24-weeks post-DMR, median (IQR) HbA1c change was −10.4 (18.6) mmol/mol in DMR group versus −7.1 (16.4) mmol/mol in sham group (p=0.147). In patients with baseline liver MRI-PDFF >5% (DMR n=48; sham n=43), 12-week post-DMR liver-fat change was −5.4 (5.6)% in DMR group versus −2.9 (6.2)% in sham group (p=0.096). Results from prespecified interaction testing and clinical parameter assessment showed heterogeneity between European (DMR N=39; sham N=37) and Brazilian (DMR N=17; sham N=16) populations (p=0.063), therefore, results were stratified by region. In European mITT, 24-weeks post-DMR, median (IQR) HbA1c change was –6.6 mmol/mol (17.5 mmol/mol) versus –3.3 mmol/mol (10.9 mmol/mol) post-sham (p=0.033); 12-week post-DMR liver-fat change was –5.4% (6.1%) versus –2.2% (4.3%) post-sham (p=0.035). Brazilian mITT results trended towards DMR benefit in HbA1c, but not liver fat, in context of a large sham effect. In overall PP, patients with high baseline fasting plasma glucose ([FPG] ≥10 mmol/L) had significantly greater reductions in HbA1c post-DMR versus sham (p=0.002). Most adverse events were mild and transient. Conclusions: DMR is safe and exerts beneficial disease-modifying metabolic effects in T2D with or without non-alcoholic liver disease (NAFLD), particularly in patients with high FPG
Hydrothermal Duodenal Mucosal Resurfacing: Role in the Treatment of Metabolic Disease
The duodenum has become recognized as a metabolic signaling center that is involved in regulating insulin action and, therefore, insulin resistance states such as type 2 diabetes. Bariatric surgery and other manipulations of the upper intestine, in particular the duodenum, have shown that limiting nutrient exposure or contact in this key region exerts powerful metabolic effects. Early human clinical trial data suggest that endoscopic hydrothermal duodenal mucosal resurfacing is well tolerated in human subjects and has an acceptable safety profile. This article describes the rationale for this endoscopic approach and its early human use, including safety, tolerability, and early efficacy.SCOPUS: re.jinfo:eu-repo/semantics/publishe
Chronic peptide-based GIP receptor inhibition exhibits modest glucose metabolic changes in mice when administered either alone or combined with GLP-1 agonism.
Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3-30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5-42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism
Duodenal mucosal resurfacing: proof-of-concept, procedural development, and initial implementation in the clinical setting
Background and Aims: We aimed to develop duodenal mucosal resurfacing (DMR), a minimally invasive upper endoscopic hydrothermal ablation procedure, to treat insulin-resistant metabolic diseases. Methods: We completed a sham-controlled, rodent proof-of-concept study and longitudinal safety study in pigs to demonstrate feasibility to test DMR in humans. Subsequently, the DMR procedure was implemented in an open-label first-in-human (FIH) study of safety and efficacy in patients with type 2 diabetes (T2D). Results: In rats, duodenal abrasion reduced hyperglycemia by 59 mg/dL on average, compared with no change from baseline in the sham treatment arm (P < .05). In pigs, the balloon catheter successfully and safely delivered hydrothermal ablation to the duodenal mucosa and superficial submucosa. Complete mucosal healing was demonstrated by week 6. In the FIH study, hydrothermal ablation was successfully administered with no evidence of perforation, pancreatitis, or hemorrhage. Duodenal biopsy specimens obtained 3 months postprocedure demonstrated full mucosal regrowth. No inflammation was observed, and there was minimal-to-mild collagen banding deposition observed in a proportion of ablation site biopsy specimens with no evidence of fibrotic scarring. Glycemic and hepatic measures improved through 6 months of follow-up. Conclusions: DMR shows potential as an endoscopic intervention that improves glycemic and hepatic parameters in patients with T2D. Further mechanistic and clinical studies are underway to further explore DMR as a treatment for metabolic disease
Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes:6-month interim analysis from the first-in-human proof-of-concept study
OBJECTIVE To assess procedural safety and glycemic indices at 6 months in a first-in-human study of duodenal mucosal resurfacing (DMR), a novel, minimally invasive, upper endoscopic procedure involving hydrothermal ablation of the duodenal mucosa, in patients with type 2 diabetes and HbA1c 657.5% (58 mmol/mol) on one or more oral antidiabetic agents. RESEARCH DESIGN AND METHODS Using novel balloon catheters, DMR was conducted on varying lengths of duodenum in anesthetized patients at a single medical center. RESULTS A total of 39 patients with type 2 diabetes (screening HbA1c 9.5% [80 mmol/mol]; BMI 31 kg/m2) were treated and included in the interimefficacy analysis: 28 had a long duodenal segment ablated (LS; 3c9.3 cm treated) and 11 had a short segment ablated (SS; 3c3.4 cm treated). Overall, DMR was well tolerated with minimal gastrointestinal symptoms postprocedure. Three patients experienced duodenal stenosis treated successfully by balloon dilation. HbA1c was reduced by 1.2% at 6 months in the full cohort (P < 0.001). More potent glycemic effects were observed among the LS cohort, who experienced a 2.5% reduction in mean HbA1c at 3months postprocedure vs. 1.2%in the SS group (P < 0.05) and a 1.4% reduction at 6 months vs. 0.7% in the SS group (P = 0.3). This occurred despite net medication reductions in the LS cohort between 0 and 6 months. Among LS patients with a screening HbA1c of 7.5-10% (58-86 mmol/mol) and on stable antidiabetic medications postprocedure, HbA1c was reduced by 1.8% at 6 months (P < 0.01). CONCLUSIONS Single-procedure DMR elicits a clinically significant improvement in hyperglycemia in patients with type 2 diabetes in the short-term, with acceptable safety and tolerability. Long-termsafety, efficacy, and durability and possiblemechanisms of action require further investigation
Durable metabolic improvements 2 years after duodenal mucosal resurfacing (DMR) in patients with type 2 diabetes (REVITA-1 Study)
Aims: Duodenal mucosal resurfacing (DMR) is an endoscopic procedure developed to improve metabolic parameters and restore insulin sensitivity in patients with diabetes. Here we report long-term DMR safety and efficacy from the REVITA-1 study. Materials and Methods: REVITA-1 was a prospective, single-arm, open-label, multicenter study of DMR feasibility, safety, and efficacy in patients with type 2 diabetes (hemoglobin A1c [HbA1c] of 7.5–10.0% (58–86 mmol/mol)) on oral medication. Safety and glycemic (HbA1c), hepatic (alanine aminotransferase [ALT]), and cardiovascular (HDL, triglyceride [TG]/HDL ratio) efficacy parameters were assessed (P values presented for LS mean change). Results: Mean ± SD HbA1c levels reduced from 8.5 ± 0.7% (69.1 ± 7.1 mmol/mol) at baseline (N = 34) to 7.5 ± 0.8% (58.9 ± 8.8 mmol/mol) at 6 months (P < 0.001); and this reduction was sustained through 24 months post-DMR (7.5 ± 1.1% [59.0 ± 12.3 mmol/mol], P < 0.001) while in greater than 50% of patients, glucose-lowering therapy was reduced or unchanged. ALT decreased from 38.1 ± 21.1 U/L at baseline to 32.5 ± 22.1 U/L at 24 months (P = 0.048). HDL and TG/HDL improved during 24-months of follow-up. No device- or procedure-related serious adverse events, unanticipated device effects, or hypoglycemic events were noted between 12 and 24 months post-DMR. Conclusions: DMR is associated with durable improvements in insulin sensitivity and multiple downstream metabolic parameters through 24 months post-treatment in type 2 diabetes. Clinical trial reg. no. NCT02413567, clinicaltrials.gov.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Safety and efficacy of hydrothermal duodenal mucosal resurfacing in patients with type 2 diabetes:The randomised, double-blind, sham-controlled, multicentre REVITA-2 feasibility trial
Objective: Hydrothermal duodenal mucosal resurfacing (DMR) is a safe, outpatient endoscopic procedure. REVITA-2, a double-blind, superiority randomised controlled trial, investigates safety and efficacy of DMR using the single catheter Revita system (Revita DMR (catheter and system)), on glycaemic control and liver fat content in type 2 diabetes (T2D). Design: Eligible patients (haemoglobin A1c (HbA1c) 59-86 mmol/mol, body mass index≥24 and ≤40 kg/m2, fasting insulin >48.6 pmol/L, ≥1 oral antidiabetic medication) enrolled in Europe and Brazil. Primary endpoints were safety, change from baseline in HbA1c at 24 weeks, and liver MRI proton-density fat fraction (MRI-PDFF) at 12 weeks. Results: Overall mITT (DMR n=56; sham n=52), 24 weeks post DMR, median (IQR) HbA1c change was -10.4 (18.6) mmol/mol in DMR group versus -7.1 (16.4) mmol/mol in sham group (p=0.147). In patients with baseline liver MRI-PDFF >5% (DMR n=48; sham n=43), 12-week post-DMR liver-fat change was -5.4 (5.6)% in DMR group versus -2.9 (6.2)% in sham group (p=0.096). Results from prespecified interaction testing and clinical parameter assessment showed heterogeneity between European (DMR n=39; sham n=37) and Brazilian (DMR n=17; sham n=16) populations (p=0.063); therefore, results were stratified by region. In European mITT, 24 weeks post DMR, median (IQR) HbA1c change was -6.6 mmol/mol (17.5 mmol/mol) versus -3.3 mmol/mol (10.9 mmol/mol) post-sham (p=0.033); 12-week post-DMR liver-fat change was -5.4% (6.1%) versus -2.2% (4.3%) post-sham (p=0.035). Brazilian mITT results trended towards DMR benefit in HbA1c, but not liver fat, in context of a large sham effect. In overall PP, patients with high baseline fasting plasma glucose ((FPG)≥10 mmol/L) had significantly greater reductions in HbA1c post-DMR versus sham (p=0.002). Most adverse events were mild and transient. Conclusions: DMR is safe and exerts beneficial disease-modifying metabolic effects in T2D with or without non-alcoholic liver disease, particularly in patients with high FPG. Trial registration number: NCT02879383SCOPUS: ar.jinfo:eu-repo/semantics/publishe