63 research outputs found
Severe axonal neuropathy is a late manifestation of SPG11
Complex hereditary spastic paraplegia (HSP) is a clinically heterogeneous group of disorders usually inherited in an autosomal recessive manner. In the past, complex recessive spastic paraplegias have been frequently associated with SPG11 mutations but also with defects in SPG15, SPG7 and a handful of other rare genes. Pleiotropy exists in HSP genes, exemplified in the recent association of SPG11 mutations with CMT2. In this study, we performed whole exome sequence analysis and identified two siblings with novel compound heterozygous frameshift SPG11 mutations. The mutations segregated with disease were not present in control databases and analysis of skin fibroblast derived mRNA indicated that the SPG11 truncated mRNA species were not degraded significantly by non-sense mediated mRNA decay. These siblings had severe early-onset spastic paraplegia but later in their disease developed severe axonal neuropathy, neuropathic pain and blue/black foot discolouration likely caused by a combination of the severe neuropathy with autonomic dysfunction and peripheral oedema. We also identified a similar late-onset axonal neuropathy in a Cypriot SPG11 family. Although neuropathy is occasionally present in SPG11, in our SPG11 patients reported here it was particularly severe, highlighting the association of axonal neuropathy with SPG11 and the late manifestation of axonal peripheral nerve damage
Efficacy of Caltropis procera and Ficus sycomorus extracts in treating MRSA (methicillin-resistant Staphylococcus aureus)-keratitis in rabbit
MRSA-induced keratitis in rabbit was used to evaluate the therapeutic effect of F. sycomorus leaves and C. procera latex extracts. Within the 6 rabbit groups tested, group 1 received sterilized saline, while other groups (2 to 6) received 100 ÎŒl of intrastromal injections of 1.5Ă103 colony forming unit (cfu) ml-1 of methicillin-resistant Staphylococcus aureus (MRSA). After 12 hours, groups 3 to 6 also received chloramphenicol, aqueous extract of C. procera latex, aqueous and alcoholic extracts of F. sycomorus leaves, respectively 3 times daily for 12 successive days. The tested extracts inhibited MRSA growth in vitro (i.e. on culture medium). Colony counts in cornea discs from groups 3 to 6 were significantly reduced (P †0.001) compared to group 2 (untreated). Clinical signs of keratitis were observed on group 2 until the end of experiment. In groups 3 to 6, gradual recovery was observed and signs disappeared by the 12th DPI (days post inoculation). Only mild symptoms persisted in group 5 (aqueous extract of leaves). In group 3 and 5, cornea, iris, ciliary body and conjunctiva showed mild leukocytic infiltration and depigmentation of melanin cells while recovery of cornea and iris was observed in groups 4 and 6. In conclusion, the used extracts have potential therapeutic effects on MRSA-induced keratitis in rabbit
An update on advances in magnetic resonance imaging of multiple system atrophy
In this review, we describe how different neuroimaging tools have been used to identify novel MSA biomarkers, highlighting their advantages and limitations. First, we describe the main structural MRI changes frequently associated with MSA including the 'hot cross-bun' and 'putaminal rim' signs as well as putaminal, pontine, and middle cerebellar peduncle (MCP) atrophy. We discuss the sensitivity and specificity of different supra- and infratentorial changes in differentiating MSA from other disorders, highlighting those that can improve diagnostic accuracy, including the MCP width and MCP/superior cerebellar peduncle (SCP) ratio on T1-weighted imaging, raised putaminal diffusivity on diffusion-weighted imaging, and increased T2* signal in the putamen, striatum, and substantia nigra on susceptibility-weighted imaging. Second, we focus on recent advances in structural and functional MRI techniques including diffusion tensor imaging (DTI), resting-state functional MRI (fMRI), and arterial spin labelling (ASL) imaging. Finally, we discuss new approaches for MSA research such as multimodal neuroimaging strategies and how such markers may be applied in clinical trials to provide crucial data for accurately selecting patients and to act as secondary outcome measures
Genetic and phenotypic characterization of NKX6â2ârelated spastic ataxia and hypomyelination
Background and purpose
Hypomyelinating leukodystrophies are a heterogeneous group of genetic disorders with a wide spectrum of phenotypes and a high rate of genetically unsolved cases. Biâallelic mutations in NKX6â2 were recently linked to spastic ataxia 8 with hypomyelinating leukodystrophy.
Methods
Using a combination of homozygosity mapping, exome sequencing, and detailed clinical and neuroimaging assessment a series of new NKX6â2 mutations in a multicentre setting is described. Then, all reported NKX6â2 mutations and those identified in this study were combined and an inâdepth analysis of NKX6â2ârelated disease spectrum was provided.
Results
Eleven new cases from eight families of different ethnic backgrounds carrying compound heterozygous and homozygous pathogenic variants in NKX6â2 were identified, evidencing a high NKX6â2 mutation burden in the hypomyelinating leukodystrophy disease spectrum. Our data reveal a phenotype spectrum with neonatal onset, global psychomotor delay and worse prognosis at the severe end and a childhood onset with mainly motor phenotype at the milder end. The phenotypic and neuroimaging expression in NKX6â2 is described and it is shown that phenotypes with epilepsy in the absence of overt hypomyelination and diffuse hypomyelination without seizures can occur.
Conclusions
NKX6â2 mutations should be considered in patients with autosomal recessive, very early onset of nystagmus, cerebellar ataxia with hypotonia that rapidly progresses to spasticity, particularly when associated with neuroimaging signs of hypomyelination. Therefore, it is recommended that NXK6â2 should be included in hypomyelinating leukodystrophy and spastic ataxia diagnostic panels
Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes
Here we report biallelic mutations in the sorbitol dehydrogenase gene (SORD) as the most frequent recessive form of hereditary neuropathy. We identified 45 individuals from 38 families across multiple ancestries carrying the nonsense c.757delG (p.Ala253GlnfsTer27) variant in SORD, in either a homozygous or compound heterozygous state. SORD is an enzyme that converts sorbitol into fructose in the two-step polyol pathway previously implicated in diabetic neuropathy. In patient-derived fibroblasts, we found a complete loss of SORD protein and increased intracellular sorbitol. Furthermore, the serum fasting sorbitol levels in patients were dramatically increased. In Drosophila, loss of SORD orthologs caused synaptic degeneration and progressive motor impairment. Reducing the polyol influx by treatment with aldose reductase inhibitors normalized intracellular sorbitol levels in patient-derived fibroblasts and in Drosophila, and also dramatically ameliorated motor and eye phenotypes. Together, these findings establish a novel and potentially treatable cause of neuropathy and may contribute to a better understanding of the pathophysiology of diabetes
PDXK mutations cause polyneuropathy responsive to pyridoxal 5'-phosphate supplementation.
OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240
PDXK mutations cause polyneuropathy responsive to PLP supplementation
OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on ATP-binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology and biochemical quantification. RESULTS: We identified bi-allelic mutations in PDXK in five individuals from two unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP-binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in one family, improvement in power, pain and fatigue contributing to patients regaining their ability to ambulate during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown aetiology characterised by reduced PLP levels. This article is protected by copyright. All rights reserved
- âŠ