1,768 research outputs found

    Thermodynamics of an ideal generalized gas:II Means of order α\alpha

    Full text link
    The property that power means are monotonically increasing functions of their order is shown to be the basis of the second laws not only for processes involving heat conduction but also for processes involving deformations. In an LL-potentail equilibration the final state will be one of maximum entropy, while in an entropy equilibrium the final state will be one of minimum LL. A metric space is connected with the power means, and the distance between means of different order is related to the Carnot efficiency. In the ideal classical gas limit, the average change in the entropy is shown to be proportional to the difference between the Shannon and R\'enyi entropies for nonextensive systems that are multifractal in nature. The LL-potential, like the internal energy, is a Schur convex function of the empirical temperature, which satisfies Jensen's inequality, and serves as a measure of the tendency to uniformity in processes involving pure thermal conduction.Comment: 8 page

    Circulating gluten-specific FOXP3<sup>+</sup>CD39<sup>+</sup> regulatory T cells have impaired suppressive function in patients with celiac disease

    Full text link
    Background Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. Objective We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3)+ Treg cells. Methods Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4+ T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4+ T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Results Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4+ T cells were FOXP3+CD39+ Treg cells, which reside within the pool of memory CD4+CD25+CD127lowCD45RO+ Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3+CD39+ Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. Conclusion This study provides the first estimation of FOXP3+CD39+ Treg cell frequency within circulating gluten-specific CD4+ T cells after oral gluten challenge of patients with celiac disease. FOXP3+CD39+ Treg cells comprised a major proportion of all circulating gluten-specific CD4+ T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis

    Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease

    Get PDF
    We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel

    Defining the Riddle in Order to Solve It: There Is More Than One “Parkinson's Disease”

    Get PDF
    Background: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. Objective: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for “defining the riddle” will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. Conclusion: Accuracy in defining endophenotypes of “typical PD” across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Testing the white dwarf mass-radius relationship with eclipsing binaries

    Get PDF
    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass–radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon–oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon–oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10−5 ≥ MH/MWD ≥ 10−4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution

    High-speed photometry of Gaia14aae: an eclipsing AMCVn that challenges formation models

    Get PDF
    AM CVn-type systems are ultracompact, hydrogen-deficient accreting binaries with degenerate or semidegenerate donors. The evolutionary history of these systems can be explored by constraining the properties of their donor stars. We present high-speed photometry of Gaia14aae, an AM CVn with a binary period of 49. 7 min and the first AM CVn in which the central white dwarf is fully eclipsed by the donor star. Modelling of the light curves of this system allows for the most precise measurement to date of the donor mass of an AM CVn, and relies only on geometric and well-tested physical assumptions. We find a mass ratio q = M2/M1 = 0.0287 ± 0.0020 and masses M1 = 0.87 ± 0.02 M⊙ and M2 = 0.0250 ± 0.0013 M⊙. We compare these properties to the three proposed channels for AM CVn formation. Our measured donor mass and radius do not fit with the contraction that is predicted for AM CVn donors descended from white dwarfs or helium stars at long orbital periods. The donor properties we measure fall in a region of parameter space in which systems evolved from hydrogen-dominated cataclysmic variables are expected, but such systems should show spectroscopic hydrogen, which is not seen in Gaia14aae. The evolutionary history of this system is therefore not clear. We consider a helium-burning star or an evolved cataclysmic variable to be the most likely progenitors, but both models require additional processes and/or fine-tuning to fit the data. Additionally, we calculate an updated ephemeris which corrects for an anomalous time measurement in the previously published ephemeris
    corecore