1,706 research outputs found

    Lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA)

    Get PDF
    The results are presented of flight experiments to determine the lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft designed to furnish information on various aerodynamic characteristics of a transport type of airplane that makes use of the upper-surface blown (USB) flap technology to achieve short takeoff and landing (STOL) performance. The flight program designed to acquire the data consisted of maneuvers produced by rudder and control-wheel inputs with the airplane in several configurations that had been proposed for landing approach and takeoff operation. The normal stability augmentation system was not engaged during these maneuvers. Time-history records from the maneuvers were analyzed with a parameter estimation procedure to extract lateral-directional stability and control derivatives. For one aircraft configuration in which the USB flaps were deflected 50 deg, several maneuvers were performed to determine the effects of varying the average angle of attack, varying the thrust coefficient, and setting the airplane's upper surface spoilers at a 13 deg symmetrical bias angle . The effects on the lateral characteristics of deflecting the spoilers were rather small and generally favorable. The data indicate that for one test, conducted at low thrust (a thrust coefficient of 0.38), compared with results from tests at thrust coefficients of 0.77 and larger, there was a significant decrease in the lateral control effectiveness, in the yaw damping and in the directional derivative. The directional derivative was also decreased (by about 30 percent) when the average angle of attack of the test was increased from 3 to 16 deg

    Simulation evaluation of a low-altitude helicopter flight guidance system adapted for a helmet-mounted display

    Get PDF
    A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world

    Study of magnetic and specific heat measurements at low temperatures in Nd0.5Sr0.5MnO3 and Nd0.5Ca0.5MnO3

    Full text link
    The magnetization at low temperatures for Nd0.5Sr0.5MnO3 and Nd0.5Ca0.5MnO3 samples showed a rapid increase with decreasing temperatures, contrary to a La0.5Ca0.5MnO3 sample. Specific heat measurement at low temperatures showed a Schottky-like anomaly for the first two samples. However, there is not a straight forward correlation between the intrinsic magnetic moment of the Nd3+ ions and the Schottky-like anomaly.Comment: To be presented in the 1 Joint European Magnetic Symposia, Grenoble,France (2001). Also submitted to Journal of Magnetism and Magnetic Material

    Exploring the permanence of conservation covenants

    Get PDF
    Conservation on private land is a growing part of international efforts to stem the decline of biodiversity. In many countries, private land conservation policy often supports in-perpetuity covenants and easements, which are legally binding agreements used to protect biodiversity on private land by restricting activities that may negatively impact ecological values. With a view to understand the long-term security of these mechanisms, we examined release and breach data from all 13 major covenanting programs across Australia. We report that out of 6,818 multi-party covenants, only 8 had been released, contrasting with approximately 130 of 673 single-party covenants. Breach data was limited, with a minimum of 71 known cases where covenant obligations had not been met. With a focus on private land conservation policy, we use the results from this case study to argue that multi-party covenants appear an enduring conservation mechanism, highlight the important role that effective monitoring and reporting of the permanency of these agreements plays in contributing to their long-term effectiveness, and provide recommendations for organizations seeking to improve their monitoring programs. The collection of breach and release data is important for the continuing improvement of conservation policies and practices for private land

    Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control

    Get PDF
    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems

    On the number of representations providing noiseless subsystems

    Full text link
    This paper studies the combinatoric structure of the set of all representations, up to equivalence, of a finite-dimensional semisimple Lie algebra. This has intrinsic interest as a previously unsolved problem in representation theory, and also has applications to the understanding of quantum decoherence. We prove that for Hilbert spaces of sufficiently high dimension, decoherence-free subspaces exist for almost all representations of the error algebra. For decoherence-free subsystems, we plot the function fd(n)f_d(n) which is the fraction of all dd-dimensional quantum systems which preserve nn bits of information through DF subsystems, and note that this function fits an inverse beta distribution. The mathematical tools which arise include techniques from classical number theory.Comment: 17 pp, 4 figs, accepted for Physical Review

    Investigation of wing upper surface flow-field disturbance due to NASA DC-8-72 in-flight inboard thrust-reverser deployment

    Get PDF
    An investigation of the wing upper surface flow-field disturbance due to in-flight inboard thrust reverser deployment on the NASA DC-8-72, which was conducted cooperatively by NASA Ames, the Federal Aviation Administration (FAA), McDonnell Douglas, and the Aerospace Industry Association (AIA), is outlined and discussed in detail. The purpose of this flight test was to obtain tufted flow visualization data which demonstrates the effect of thrust reverser deployment on the wing upper surface flow field to determine if the disturbed flow regions could be modeled by computational methods. A total of six symmetric thrust reversals of the two inboard engines were performed to monitor tuft and flow cone patterns as well as the character of their movement at the nominal Mach numbers of 0.55, 0.70, and 0.85. The tufts and flow cones were photographed and video-taped to determine the type of flow field that occurs with and without the thrust reversers deployed. In addition, the normal NASA DC-8 onboard Data Acquisition Distribution System (DADS) was used to synchronize the cameras. Results of this flight test will be presented in two parts. First, three distinct flow patterns associated with the above Mach numbers were sketched from the motion videos and discussed in detail. Second, other relevant aircraft parameters, such as aircraft's angular orientation, altitude, Mach number, and vertical descent, are discussed. The flight test participants' comments were recorded on the videos and the interested reader is referred to the video supplement section of this report for that information

    Flight investigation of the use of a nose gear jump strut to reduce takeoff ground roll distance of STOL aircraft

    Get PDF
    A series of flight tests was conducted to evaluate the reduction of takeoff ground roll distance obtainable from a rapid extension of the nose gear strut. The NASA Quiet Short-haul Research Aircraft (QSRA) used for this investigation is a transport-size short takeoff and landing (STOL) research vehicle with a slightly swept wing that employs the upper surface blowing (USB) concept to attain the high lift levels required for its low speed, short-field performance. Minor modifications to the conventional nose gear assembly and the addition of a high pressure pneumatic system and a control system provided the extendible nose gear, or 'jump strut,' capability. The limited flight test program explored the effects of thrust-to-weight ratio, storage tank initial pressure, and control valve open time duration on the ground roll distance. The data show that the predicted reduction of takeoff ground roll on the order of 10 percent was achieved with the use of the jump strut. Takeoff performance with the jump strut was also found to be essentially independent of the pneumatic supply pressure and was only slightly affected by control valve open time within the range of the parameters examined

    Modeling and Simulation Tools for Heavy Lift Airships

    Get PDF
    For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented

    The Impact Of Interprofessional Simulation On Future Healthcare Professionals

    Get PDF
    Research poster describing investigation of the question: Do simulated interprofessional client encounters impact the likelihood and confidence of future healthcare professionals to work interprofessionally in practice?https://dune.une.edu/cecespring2020/1003/thumbnail.jp
    corecore