215 research outputs found

    Commercial Cargo Derivative Study of the Advanced Hybrid Wing Body Configuration with Over-Wing Engine Nacelles

    Get PDF
    LM has leveraged our partnership with the Air Force Research Laboratory (AFRL) and NASA on the advanced hybrid wing body (HWB) concept to develop a commercial freighter which addresses the NASA Advanced Air Transport Technology (AATT) Project goals for improved efficiency beyond 2025. The current Air Force Research Laboratory (AFRL) Revolutionary Configurations for Energy Efficiency (RCEE) program established the HWB configuration and technologies needed for military transports to achieve aerodynamic and fuel efficiencies well beyond the commercial industry's most modern designs. This study builds upon that effort to develop a baseline commercial cargo aircraft and two HWB derivative commercial cargo aircraft to quanitify the benefit of the HWB and establish a technology roadmap for further development

    Mutations to the caveolin scaffolding domain reduces Caveolin-1 targeting of glycolytic enzymes to lymphocyte membranes [abstract]

    Get PDF
    Abstract only availablePreviously, we found caveolin (CAV-1) expressed by transfection in cultured lymphocytes induced caveolae formation and targeted the glycolytic enzyme phosphofructokinase (PFK) to the membrane. We also found CAV-1 targets other glycolytic enzymes such as aldolase (ALD)and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to the plasma membrane in the CAV-1 transfected lymphocytes. Here we hypothesized that if a mutant CAV-1 (which has essential aromatic residues in the caveolin scaffolding domain (CSD) mutated) is expressed in the lymphocyte then colocalization of the glycolytic enzyme PFK with CAV-1 will be reduced. We tested this hypothesis by comparing the colocalization of CAV-1 with the glycolytic enzymes PFK, ALD and GAPDH in lymphocytes which expressed either a wild type CAV-1 (WT) or a mutant CAV-1 which had either one mutation (SM) or two mutations (DM) in the CSD. Colocalization analysis by confocal microscopy of cells immunoassayed for CAV-1 and ALD was 76.59% in lymphocytes transfected with CAV-1 WT, 23.96% in lymphocytes transfected with CAV-1 SM, and 58.74% in the lymphocytes transfected with CAV-1 DM. Analysis of colocalization of the enzymes PFK, GAPDH, and ALD with CAV-1 averaged 65.17% for the CAV-1 WT cells, 49.29% for the CAV-1 SM cells and 50.81% for the CAV-1 DM cells. The shift in distribution of glycolytic enzymes and CAV-1 in the CAV-1 WT, the CAV-1 SM or DM CAV-1 types indicates that a single mutation to the CSD reduces membrane targeting of glycolytic enzymes, and two mutations in the CSD produces retention of CAV-1 in the cytosol. These results suggest that an intact CSD domain is essential to the CAV-1 targeting of glycolytic enzymes to the membrane

    ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA)

    Get PDF
    The proceedings of the Benchmark Problems in Computational Aeroacoustics Workshop held at NASA Langley Research Center are the subject of this report. The purpose of the Workshop was to assess the utility of a number of numerical schemes in the context of the unusual requirements of aeroacoustical calculations. The schemes were assessed from the viewpoint of dispersion and dissipation -- issues important to long time integration and long distance propagation in aeroacoustics. Also investigated were the effect of implementation of different boundary conditions. The Workshop included a forum in which practical engineering problems related to computational aeroacoustics were discussed. This discussion took the form of a dialogue between an industrial panel and the workshop participants and was an effort to suggest the direction of evolution of this field in the context of current engineering needs

    Reynolds number influences in aeronautics

    Get PDF
    Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical portion of the problem

    High Redshift Supernova Rates

    Full text link
    We use a sample of 42 supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope as part of the Great Observatories Origins Deep Survey to measure the rate of core collapse supernovae to z~0.7 and type Ia supernovae to z~1.6. This significantly increases the redshift range where supernova rates have been estimated from observations. The rate of core collapse supernovae can be used as an independent probe of the cosmic star formation rate. Based on the observations of 17 core collapse supernovae, we measure an increase in the core collapse supernova rate by a factor of 1.6 in the range 0.3<z<0.7, and an overall increase by a factor of 7 to z~0.7 in comparison to the local core collapse supernova rate. The increase in the rate in this redshift range in consistent with recent measurements of the star formation rate derived from UV-luminosity densities and IR datasets. Based on 25 type Ia supernovae, we find a SN Ia rate that is a factor 3-5 higher at z~1 compared to earlier estimates at lower redshifts (z<0.5), implying that the type Ia supernova rate traces a higher star formation rate at redshifts z>1 compared to low redshift. At higher redshift (z>1), we find a suggested decrease in the type Ia rate with redshift. This evolution of the Ia rate with redshift is consistent with a type Ia progenitor model where there is a substantial delay between the formation of the progenitor star and the explosion of the supernova. Assuming that the type Ia progenitor stars have initial main sequence masses 3-8 M_Sun, we find that 5-7% of the available progenitors explode as type Ia supernovae.Comment: 16 pages, 3 figures, accepted for publication in the Astrophysical Journa

    Solar thermoelectricity Via Advanced Latent Heat Storage

    Get PDF
    An aspect of the present disclosure is a system that includes a thermal valve having a first position and a second position, a heat transfer fluid, and an energy converter where, when in the first position, the thermal valve prevents the transfer of heat from the heat transfer fluid to the energy converter, and when in the second position, the thermal valve allows the transfer of heat from the heat transfer fluid to the energy converter, such that at least a portion of the heat transferred is converted to electricity by the energy converter

    Thermal Emission of WASP-14b Revealed with Three Spitzer Eclipses

    Get PDF
    Exoplanet WASP-14b is a highly irradiated, transiting hot Jupiter. Joshi et al. calculate an equilibrium temperature Teq of 1866 K for zero albedo and reemission from the entire planet, a mass of 7.3 +/- 0.5 Jupiter masses and a radius of 1.28 +/- 0.08 Jupiter radii. Its mean density of 4.6 g/cm3 is one of the highest known for planets with periods less than 3 days. We obtained three secondary eclipse light curves with the Spitzer Space Telescope. The eclipse depths from the best jointly fit model are 0.224%0.224\% +/- 0.018%0.018\% at 4.5 {\mu}m and 0.181%0.181\% +/- 0.022%0.022\% at 8.0 {\mu}m. The corresponding brightness temperatures are 2212 +/- 94 K and 1590 +/- 116 K. A slight ambiguity between systematic models suggests a conservative 3.6 {\mu}m eclipse depth of 0.19%0.19\% +/- 0.01%0.01\% and brightness temperature of 2242 +/- 55 K. Although extremely irradiated, WASP-14b does not show any distinct evidence of a thermal inversion. In addition, the present data nominally favor models with day night energy redistribution less than  30%~30\%. The current data are generally consistent with oxygen-rich as well as carbon-rich compositions, although an oxygen-rich composition provides a marginally better fit. We confirm a significant eccentricity of e = 0.087 +/- 0.002 and refine other orbital parameters.Comment: 16 pages, 16 figure

    The Carnegie Supernova Project: First Near-Infrared Hubble Diagram to z~0.7

    Full text link
    The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the Universe. The CSP differs from other projects to date in its goal of providing an I-band {rest-frame} Hubble diagram. Here we present the first results from near-infrared (NIR) observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 < z < 0.7. We combine these results with those from the low-redshift CSP at z <0.1 (Folatelli et al. 2009). We present light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia and we compare these data to 21 new SNe Ia at low redshift. These data support the conclusion that the expansion of the Universe is accelerating. When combined with independent results from baryon acoustic oscillations (Eisenstein et al. 2005), these data yield Omega_m = 0.27 +/- 0.0 (statistical), and Omega_DE = 0.76 +/- 0.13 (statistical) +/- 0.09 (systematic), for the matter and dark energy densities, respectively. If we parameterize the data in terms of an equation of state, w, assume a flat geometry, and combine with baryon acoustic oscillations, we find that w = -1.05 +/- 0.13 (statistical) +/- 0.09 (systematic). The largest source of systematic uncertainty on w arises from uncertainties in the photometric calibration, signaling the importance of securing more accurate photometric calibrations for future supernova cosmology programs. Finally, we conclude that either the dust affecting the luminosities of SNe Ia has a different extinction law (R_V = 1.8) than that in the Milky Way (where R_V = 3.1), or that there is an additional intrinsic color term with luminosity for SNe Ia independent of the decline rate.Comment: 44 pages, 23 figures, 9 tables; Accepted for publication in the Astrophysical Journa

    Adam Smith’s Green Thumb and Malthus’ Three Horsemen: Cautionary tales from classical political economy

    Get PDF
    This essay identifies a contradiction between the flourishing interest in the environmental economics of the classical period and a lack of critical parsing of the works of its leading representatives. Its focus is the work of Adam Smith and Thomas Malthus. It offers a critical analysis of their contribution to environmental thought and surveys the work of their contemporary devotees. It scrutinizes Smith's contribution to what Karl Polanyi termed the "economistic fallacy," as well as his defenses of class hierarchy, the "growth imperative" and consumerism. It subjects to critical appraisal Malthus's enthusiasm for private property and the market system, and his opposition to market regulation. While Malthus's principal attraction to ecological economists lies in his having allegedly broadened the scope of economics, and in his narrative of scarcity, this article shows that he, in fact, narrowed the scope of the discipline and conceptualized scarcity in a reified and pseudo-scientific way
    corecore