61 research outputs found
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Endogenous melatonin and oxidatively damaged guanine in DNA
<p>Abstract</p> <p>Background</p> <p>A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA.</p> <p>Methods</p> <p>Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight).</p> <p>Results</p> <p>Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with marginally higher levels of 8-oxoGua (p < 0.07), but not with 8-oxodG. Among the daughters, no relationship was found between melatonin levels and either 8-oxodG or 8-oxoGua levels. When the mother and father data were further analyzed using only subjects older than the oldest daughter, the associations became somewhat stronger.</p> <p>Conclusion</p> <p>Low levels of endogenous melatonin production among older individuals may lead to higher levels of oxidatively damaged guanine in DNA, thereby possibly increasing the risk of developing cancer. The possible different effects of melatonin in the rates of utilization of pathways for repair of oxidatively damaged guanine in DNA identified between older women and older men are intriguing.</p
Melatonin protects against piroxicam-induced gastric ulceration
The antiulcer e.ect of melatonin on gastric lesions caused by
piroxicam was studied with the intent of determining the mechanism of
action of this agent. Melatonin dose-dependently lowered piroxicam and
indomethacin-induced gastric damage with more than 90% inhibition at a
dose of 60 mg/kg BW. Increased lipid peroxidation, augmented protein
oxidation and decreased glutathione content of the gastric tissue following
piroxicam treatment indicated a possible involvement of oxidative stress in
this nonsteroidal anti-in.ammatory drug (NSAID)-induced gastropathy.
Pretreatment of rats with melatonin prevented these changes. Oral
administration of piroxicam to rats caused a threefold increase in the tissue
levels of hydroxyl radical generation, a change signi.cantly attenuated by
melatonin. Furthermore, a decrease in the activity of gastric peroxidase and
an increase in the activity of gastric superoxide dismutase(s) (SOD) because
of piroxicam treatment was attenuated by melatonin pretreatment indicating
that the indole possibly exerts its gastroprotective e.ects through its direct as
well as indirect antioxidant activities. The results of the present studies also
reveal that melatonin may in.uence the expression of Cu-Zn SOD, catalase,
cyclooxygenase as well as alpha-actinin whose levels were found to be
altered, following piroxicam treatment. The current studies, therefore,
document melatonin’s gastroprotective ability against piroxicam-induced
gastric damage and the .ndings raise the possibility of melatonin being
considered as a co-therapy with piroxicam or other NSAIDs in reducing the
gastropathy when long-term use of these nonsteroidal agents are
unavoidable
Melatonin: new places in therapy
The fact that the full extent of the function of the pineal gland has not yet been elucidated, has stimulated melatonin research worldwide. This review introduces melatonin's mechanism of action, direct and indirect antioxidant actions as well as the antioxidant properties of its metabolites, 6-hydroxymelatonin (6-OHM) and N-acetyl-N-formyl-5-methoxykynurenamine (AFMK). At present the mechanism of action is proposed to be receptor-, protein- and nonprotein-mediated. From its popular role in the treatment of jetlag, melatonin is now implicated in the reduction of oxidative stess, both as a free radical scavenger and antioxidant. Melatonin's direct scavenging action in respect of the following will be discussed: superoxide anions, hydrogen peroxide, hydroxyl radicals, singlet oxygen, peroxy radicals and nitric oxide/peroxy nitrite anions. In addition melatonin also possesses indirect antioxidant activity and the role of its metabolites, AFMK and 6-OHM will be presented. It is these free radical scavenging and antioxidant properties of melatonin that has shifted the focus from that of merely strengthening circadian rhythms to that of neuroprotectant: a new place in therapy
- …