3 research outputs found
A transcriptome analysis of mitten crab testes (Eriocheir sinensis)
The identification of expressed genes involved in sexual precocity of the mitten crab (Eriocheir sinensis) is critical for a better understanding of its reproductive development. To this end, we constructed a cDNA library from the rapid developmental stage of testis of E. sinensis and sequenced 3,388 randomly picked clones. After processing, 2,990 high-quality expressed sequence tags (ESTs) were clustered into 2,415 unigenes including 307 contigs and 2,108 singlets, which were then compared to the NCBI non-redundant (nr) protein and nucleotide (nt) database for annotation with Blastx and Blastn, respectively. After further analysis, 922 unigenes were obtained with concrete annotations and 30 unigenes were found to have functions possibly related to the process of reproduction in male crabs – six transcripts relevant to spermatogenesis (especially Cyclin K and RecA homolog DMC1), two transcripts involved in nuclear protein transformation, two heat-shock protein genes, eleven transcription factor genes (a series of zinc-finger proteins), and nine cytoskeleton protein-related genes. Our results, besides providing valuable information related to crustacean reproduction, can also serve as a base for future studies of reproductive and developmental biology
Research on the Performance of Regenerant Modified Cold Recycled Mixture with Asphalt Emulsions
In order to study the mechanical properties and effect of a regenerant on a cold recycled mixture with asphalt emulsions (CRMEs), the moisture susceptibility, high-temperature performance, low-temperature performance, dynamic mechanical properties and durability of CRMEs were analyzed and evaluated by immersion splitting strength tests, freeze-thaw splitting strength tests, rutting tests, semi-circle bending tests, uniaxial compression dynamic modulus tests and indirect tensile tests. Scanning electron microscopy (SEM) was used to analyze the micromorphology of CRMEs modified with regenerant. Finally, a comprehensive evaluation system of five different CRMEs was established based on the efficacy coefficient method to quantitatively analyze the comprehensive performance of the CRMEs. The test results showed that the regenerant can significantly improve the water immersion splitting strength, freeze-thaw splitting strength fracture energy density, and fatigue resistance of CRMEs. However, the addition of regenerant affected the high-temperature performance of the cold recycled mixture. The dynamic modulus of the CRMEs first increased and then decreased with regenerant content increasing. When the regenerant content was 8%, the dynamic modulus of the CRMEs was the highest. Adding styrene-butadiene rubber (SBR) latex can improve the high-temperature performance of CRMEs, but the moisture susceptibility, low temperature performance and fatigue resistance of the cold recycled mixture were not significantly improved, and the dynamic modulus of the mixture was reduced. Based on the efficacy coefficient method, the optimal content of regenerant is 8%. Regenerant are potential modifiers for cold recycled mixture that they can significantly improve the dynamic mechanical properties and durability
Research on High-Temperature Rheological Properties of Emulsified Asphalt Mastics and Their Influencing Factors
The high-temperature rheological properties of emulsified asphalt mastics have a significant impact on the service performance of cold recycled mixtures with asphalt emulsions. In this paper, a dynamic shear rheological (DSR) test and a multiple stress creep recovery (MSCR) test are carried out to analyze the influence of tunneling coal gangue powder (TCGP), portland cement (PC), limestone powder (LP), and four kinds of filler binder ratio (F/B) on the high-temperature rheological properties of emulsified asphalt mastics before and after rolling thin film oven test (RTFOT) ageing. Based on the principle of time–temperature equivalence and a viscoelasticity material model, the main curve of emulsified asphalt mastics under frequency scanning test is established, and the rheological properties of emulsified asphalt mastics in a wide frequency domain are analyzed. Finally, the grey entropy theory is used to quantitatively analyze the correlation between different high temperature performance evaluation indices of emulsified asphalt mastics. The results show that the RTFOT ageing process can significantly enhance the high temperature deformation resistance of emulsified asphalt residue and its mastics. The rutting factor (G*/sin δ) of emulsified asphalt mastics increases exponentially with the increase of F/B, while the phase angle is less affected. TCGP mastics and PC mastics have better high temperature performances than those of LP mastics. The most suitable range of F/B is 0.9~1.2 when TCGP is used as the filler, and 1.2~1.5 when PC or LP is used as the filler. Grey entropy correlation analysis shows that there is a good correlation between the two evaluation systems of the DSR test and the MSCR test, and both can evaluate the high-temperature performance of emulsified asphalt mastics