8,349 research outputs found

    Observation of Fast Evolution in Parity-Time-Symmetric System

    Full text link
    To find and realize the optimal evolution between two states is significant both in theory and application. In quantum mechanics, the minimal evolution is bounded by the gap between the largest and smallest eigenvalue of the Hamiltonian. In the parity-time-symmetric(PT-symmetric) Hamiltonian theory, it was predicted that the optimized evolution time can be reduced drastically comparing to the bound in the Hermitian case, and can become even zero. In this Letter, we report the experimental observation of the fast evolution of a PT-symmetric Hamiltonian in an nuclear magnetic resonance (NMR) quantum system. The experimental results demonstrate that the PT-symmetric Hamiltonian can indeed evolve much faster than that in a quantum system, and time it takes can be arbitrary close to zero.Comment: 13 pages, 5 figure

    On the Mutual Information in Conformal Field Theory

    Full text link
    In this work, we study the universal behaviors in the mutual information of two disjoint spheres in a conformal field theory(CFT). By using the operator product expansion of the spherical twist operator in terms of the conformal family, we show that the large distance expansion of the mutual information can be cast in terms of the conformal blocks. We develop the 1/n1/n prescription to compute the coefficients before the conformal blocks. For a single conformal family, the leading nonvanishing contribution to the mutual information comes from the bilinear operators. We show that the coefficients of these operators take universal forms and such universal behavior persists in the bilinear operators with derivatives as well. Consequently the first few leading order contributions to the mutual information in CFT take universal forms. To illustrate our framework, we discuss the free scalars and free fermions in various dimensions. For the free scalars, we compute the mutual information to the next-to-leading order and find good agreement with the improved numerical lattice result. For the free fermion, we compute the leading order result, which is of universal form, and find the good match with the numerical study. Our formalism could be applied to any CFT potentially.Comment: 27+14 pages, 8 figures; References adde
    • …
    corecore