16,779 research outputs found

    Finite geometry models of electric field noise from patch potentials in ion traps

    Full text link
    We model electric field noise from fluctuating patch potentials on conducting surfaces by taking into account the finite geometry of the ion trap electrodes to gain insight into the origin of anomalous heating in ion traps. The scaling of anomalous heating rates with surface distance, dd, is obtained for several generic geometries of relevance to current ion trap designs, ranging from planar to spheroidal electrodes. The influence of patch size is studied both by solving Laplace's equation in terms of the appropriate Green's function as well as through an eigenfunction expansion. Scaling with surface distance is found to be highly dependent on the choice of geometry and the relative scale between the spatial extent of the electrode, the ion-electrode distance, and the patch size. Our model generally supports the d4d^{-4} dependence currently found by most experiments and models, but also predicts geometry-driven deviations from this trend

    Broken-Symmetry States of Dirac Fermions in Graphene with A Partially Filled High Landau Level

    Get PDF
    We report on numerical study of the Dirac fermions in partially filled N=3 Landau level (LL) in graphene. At half-filling, the equal-time density-density correlation function displays sharp peaks at nonzero wavevectors ±q\pm {\bf q^{*}}. Finite-size scaling shows that the peak value grows with electron number and diverges in the thermodynamic limit, which suggests an instability toward a charge density wave. A symmetry broken stripe phase is formed at large system size limit, which is robust against purturbation from disorder scattering. Such a quantum phase is experimentally observable through transport measurements. Associated with the special wavefunctions of the Dirac LL, both stripe and bubble phases become possible candidates for the ground state of the Dirac fermions in graphene with lower filling factors in the N=3 LL.Comment: Contains are slightly changed. Journal reference and DOI are adde

    D- shallow donor near a semiconductor-metal and a semiconductor-dielectric interface

    Full text link
    The ground state energy and the extend of the wavefunction of a negatively charged donor (D-) located near a semiconductor-metal or a semiconductor-dielectric interface is obtained. We apply the effective mass approximation and use a variational two-electron wavefunction that takes into account the influence of all image charges that arise due to the presence of the interface, as well as the correlation between the two electrons bound to the donor. For a semiconductor-metal interface, the D- binding energy is enhanced for donor positions d>1.5a_B (a_B is the effective Bohr radius) due to the additional attraction of the electrons with their images. When the donor approaches the interface (i.e. d<1.5a_B) the D- binding energy drops and eventually it becomes unbound. For a semiconductor-dielectric (or a semiconductor-vacuum) interface the D- binding energy is reduced for any donor position as compared to the bulk case and the system becomes rapidly unbound when the donor approaches the interface.Comment: Submitted to Phys. Rev. B on 19 November 200

    Microwave intermodulation distortion of MgB2 thin films

    Full text link
    The two tone intermodulation arising in MgB2 thin films deposited in-situ by planar magnetron sputtering on sapphire substrates is studied. Samples are characterised using an open-ended dielectric puck resonator operating at 8.8 GHz. The experimental results show that the third order products increase with the two-tone input power with a slope ranging between 1.5 and 2.3. The behaviour can be understood introducing a mechanism of vortex penetration in grain boundaries as the most plausible source of non linearities in these films. This assumption is confirmed by the analysis of the field dependence of the surface resistance, that show a linear behaviour at all temperatures under test.Comment: 13 pages, 3 figures; to be published in Appl. Phys. Let

    Laser-induced charging of microfabricated ion traps

    Full text link
    Electrical charging of metal surfaces due to photoelectric generation of carriers is of concern in trapped ion quantum computation systems, due to the high sensitivity of the ions' motional quantum states to deformation of the trapping potential. The charging induced by typical laser frequencies involved in doppler cooling and quantum control is studied here, with microfabricated surface electrode traps made of aluminum, copper, and gold, operated at 6 K with a single Sr+^+ ion trapped 100 μ\mum above the trap surface. The lasers used are at 370, 405, 460, and 674 nm, and the typical photon flux at the trap is 1014^{14} photons/cm2^2/sec. Charging is detected by monitoring the ion's micromotion signal, which is related to the number of charges created on the trap. A wavelength and material dependence of the charging behavior is observed: lasers at lower wavelengths cause more charging, and aluminum exhibits more charging than copper or gold. We describe the charging dynamic based on a rate equation approach.Comment: 8 pages, 8 figure

    Topological Effects caused by the Fractal Substrate on the Nonequilibrium Critical Behavior of the Ising Magnet

    Get PDF
    The nonequilibrium critical dynamics of the Ising magnet on a fractal substrate, namely the Sierpinski carpet with Hausdorff dimension dHd_H =1.7925, has been studied within the short-time regime by means of Monte Carlo simulations. The evolution of the physical observables was followed at criticality, after both annealing ordered spin configurations (ground state) and quenching disordered initial configurations (high temperature state), for three segmentation steps of the fractal. The topological effects become evident from the emergence of a logarithmic periodic oscillation superimposed to a power law in the decay of the magnetization and its logarithmic derivative and also from the dependence of the critical exponents on the segmentation step. These oscillations are discussed in the framework of the discrete scale invariance of the substrate and carefully characterized in order to determine the critical temperature of the second-order phase transition and the critical exponents corresponding to the short-time regime. The exponent θ\theta of the initial increase in the magnetization was also obtained and the results suggest that it would be almost independent of the fractal dimension of the susbstrate, provided that dHd_H is close enough to d=2.Comment: 9 figures, 3 tables, 10 page

    CMBR Constraint on a Modified Chaplygin Gas Model

    Full text link
    In this paper, a modified Chaplygin gas model of unifying dark energy and dark matter with exotic equation of state p=BρAραp=B\rho-\frac{A}{\rho^{\alpha}} which can also explain the recent accelerated expansion of the universe is investigated by the means of constraining the location of the peak of the CMBR spectrum. We find that the result of CMBR measurements does not exclude the nonzero value of parameter BB, but allows it in the range 0.35B0.025-0.35\lesssim B\lesssim0.025.Comment: 4 pages, 3 figure
    corecore