9 research outputs found

    Evaluation of Primary Water Stress Corrosion Cracking Resistance of Three Heats of Alloy 600 in 400 °C Hydrogenated Steam Condition

    No full text
    For Alloy 600, primary water stress corrosion cracking (PWSCC) is one of the key material degradation mechanisms in pressurized water reactors (PWRs). To identify the governing factors of PWSCC resistance, a systematic investigation into the role of each factor was performed. A PWSCC initiation test was performed for 3 heats of Alloy 600 in the 400 °C hydrogenated steam condition. Based on the test results, the effects of known factors like chemical composition, mechanical strength, grain boundary carbide coverage, grain boundary character, and surface cold work on PWSCC resistance were discussed. In addition, surface oxide morphology and penetrative oxide depth was compared. From this study, grain boundary character was considered to be the most dominant factor affecting the PWSCC resistance

    Long-Term Occurrence of Deoxynivalenol in Feed and Feed Raw Materials with a Special Focus on South Korea

    No full text
    The Fusarium fungi produce toxic substances called mycotoxins, which can cause disease and harmful effects in grains, livestock, and humans. Deoxynivalenol (DON), also known as vomitoxin, is one of the Fusarium mycotoxins that is known to cause vomiting in livestock. This study shows the occurrence of deoxynivalenol in feedstuffs (compound feed and feed ingredients) between 2009 and 2016 in South Korea. A total of 653 domestic samples were collected at five time points, including 494 compound feed samples and 159 feed ingredient samples. DON contamination levels were analyzed using high-performance liquid chromatography (HPLC) with pretreatment using an immunoaffinity column (IAC). The limit of detection (LOD) and the limit of quantification (LOQ) were estimated at 1–10 µg/kg and 3–35 µg/kg, respectively. Two compound feeds (two gestating sow feed samples) out of 160 pig feed samples exceeded the European Commission (EC) guidance value, while no feed ingredient samples exceeded the EC or South Korean guidance values. There were statistically significant differences in the mean contamination levels of compound feed and feed ingredients that indicated a decreasing trend over time

    A Decrease of Incidence Cases of Fumonisins in South Korean Feedstuff between 2011 and 2016

    No full text
    Several plant pathogen Fusarium species produce fumonisins (FUMs); which can end up in food and feed and; when ingested; can exhibit harmful effects on humans and livestock. Mycotoxin intoxication by fumonisin B1 (FB1) and fumonisin B2 (FB2) can cause porcine pulmonary edema; leukoencephalomalacia in equines; esophageal cancer and birth defects by natural contamination. Herein; the occurrence of FB1 and FB2 in feedstuff (compound feed and feed ingredients) was investigated between 2011 and 2016 in South Korea. A total of 535 animal feed samples (425 compound feed samples and 110 feed ingredients) produced domestically were sampled four times between 2011 and 2016 (2011; 2012; 2014 and 2016) from feed factories in South Korea. The limit of detection (LOD) for FB1 and FB2 was 20 μg/kg and 25 μg/kg; respectively; and the limit of quantitation (LOQ) was 30 μg/kg and 35 μg/kg; respectively. The recovery range (%) was between 86.4% and 108.8%; and the relative standard deviation (RSD) (%) was 4.7–12.1%. Seven (swine feed samples) out of the 425 feed samples exceeded the European Union (EU) and South Korea commission regulations over the six-year test period; and no feed ingredients exceeded the guidelines

    DETECTION OF ODSCC IN SG TUBES DEPENDING ON THE SIZE OF THE CRACK AND ON THE PRESENCE OF SLUDGE DEPOSITS

    Get PDF
    It was discovered in a Korean PWR that an extensive number of very short and shallow cracks in the SG tubes were undetectable by eddy current in-service-inspection because of the masking effect of sludge deposits. Axial stress corrosion cracks at the outside diameter of the steam generator tubes near the line contacts with the tube support plates are the major concern among the six identical Korean nuclear power plants having CE-type steam generators with Alloy 600 high temperature mill annealed tubes, HU3&4 and HB3∼6. The tubes in HB3&4 have a less susceptible microstructure so that the onset of ODSCC was substantially delayed compared to HU3&4 whose tubes are most susceptible to ODSCC among the six units. The numbers of cracks detected by the eddy current inspection jumped drastically after the steam generators of HB4 were chemically cleaned. The purpose of the chemical cleaning was to mitigate stress corrosion cracking by removing the heavy sludge deposit, since a corrosive environment is formed in the occluded region under the sludge deposit. SGCC also enhances the detection capability of the eddy current inspection at the same time. Measurement of the size of each crack using the motorized rotating pancake coil probe indicated that the cracks in HB4 were shorter and substantially shallower than the cracks in HU3&4. It is believed that the cracks were shorter and shallower because the microstructure of the tubes in HB4 is less susceptible to ODSCC. It was readily understood from the size distribution of the cracks and the quantitative information available on the probability of detection that most cracks in HB4 had been undetected until the steam generators were chemically cleaned

    The Occurrence of Zearalenone in South Korean Feedstuffs between 2009 and 2016

    No full text
    Mycotoxins produced by Fusarium plant pathogen species have harmful effects on humans and livestock by natural contamination in food and feed. Zearalenone, one of the well-known Fusarium mycotoxins, causes hyperestrogenism and toxicosis resulting in reproductive dysfunction in animals. This study investigated the occurrence of zearalenone in feedstuffs (compound feeds, feed ingredients) between 2009 and 2016 in South Korea to obtain information on zearalenone contamination in feeds for management. A total of 653 animal feed samples (494 compound feeds, 159 feed ingredients) produced domestically were sampled five times from 2009 to 2016 (2009, 2010, 2012, 2014, and 2016) from feed factories in South Korea. The levels of zearalenone were analyzed every year by high-performance liquid chromatography (HPLC) after pretreatment with an immunoaffinity column showing limit of detection (LOD) and limit of quantification (LOQ) of 0.1–3 μg/kg and 0.3–8 μg/kg, respectively. Four feed samples out of 494 compound feeds exceeded the EU and South Korea commission regulations over the eight-year test period, and no feed ingredients exceeded the guidelines

    A REVIEW ON THE ODSCC OF STEAM GENERATOR TUBES IN KOREAN NPPS

    Get PDF
    The ODSCC detected in the TSP position of Ulchin 3&4 SGs are typical ODSCC of Alloy 600MA tubes. The causative chemical environment is formed by concentration of impurities inside the occluded region formed by the tube surface, egg crate strips, and sludge deposit there. Most cracks are detected at or near the line contacts between the tube surface and the egg crate strips. The region of dense crack population, as defined as between 4th and 9th TSPs, and near the center of hot leg hemisphere plane, coincided well with the region of preferential sludge deposition as defined by thermal hydraulics calculation using SGAP computer code. The cracks developed homogeneously in a wide range of SGs, so that the number of cracks detected each outage increased very rapidly since the first detection in the 8th refueling outage. The root cause assessment focused on investigation of the difference in microstructure and manufacturing residual stress in order to reveal the cause of different susceptibilities to ODSCC among identical six units. The manufacturing residual stress as measured by XRD on OD surface and by split tube method indicated that the high residual stress of Alloy 600MA tube played a critical role in developing ODSCC. The level of residual stress showed substantial variations among the six units depending on details of straightening and OD grinding processes. Youngwang 3&4 tubes are less susceptible to ODSCC than U3 and U4 tubes because semi-continuous coarse chromium carbides are formed along the grain boundary of Y3&4 tubes, while there are finer less continuous chromium carbides in U3 and U4. The different carbide morphology is caused by the difference in cooling rate after mill anneal. There is a possibility that high chromium content in the Y3&4 tubes, still within the allowable range of Alloy 600, has made some contribution to the improved resistance to ODSCC. It is anticipated that ODSCC in Y5&6 SGs will be retarded more considerably than U3 SGs since the manufacturing residual stress in Y5&6 tubes is substantially lower than in U3 tubes, while the microstructure is similar with each other
    corecore