1,022 research outputs found
Trip-Based Public Transit Routing
We study the problem of computing all Pareto-optimal journeys in a public
transit network regarding the two criteria of arrival time and number of
transfers taken. We take a novel approach, focusing on trips and transfers
between them, allowing fine-grained modeling. Our experiments on the
metropolitan network of London show that the algorithm computes full 24-hour
profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in
dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA
201
Possible Localized Modes in the Uniform Quantum Heisenberg Chains of Sr2CuO3
A model of mobile-bond defects is tentatively proposed to analyze the
"anomalies" observed on the NMR spectrum of the quantum Heisenberg chains of
Sr2CuO3. A bond-defect is a local change in the exchange coupling. It results
in a local alternating magnetization (LAM), which when the defect moves,
creates a flipping process of the local field seen by each nuclear spin. At low
temperature, when the overlap of the LAM becomes large, the defects form a
periodic structure, which extends over almost all the chains. In that regime,
the density of bond-defects decreases linearly with T.Comment: 4 pages + 3 figures. To appear in Physical Review
Semi-Analytic Stellar Structure in Scalar-Tensor Gravity
Precision tests of gravity can be used to constrain the properties of
hypothetical very light scalar fields, but these tests depend crucially on how
macroscopic astrophysical objects couple to the new scalar field. We develop
quasi-analytic methods for solving the equations of stellar structure using
scalar-tensor gravity, with the goal of seeing how stellar properties depend on
assumptions made about the scalar coupling at a microscopic level. We
illustrate these methods by applying them to Brans-Dicke scalars, and their
generalization in which the scalar-matter coupling is a weak function of the
scalar field. The four observable parameters that characterize the fields
external to a spherically symmetric star (the stellar radius, R, mass, M,
scalar `charge', Q, and the scalar's asymptotic value, phi_infty) are subject
to two relations because of the matching to the interior solution, generalizing
the usual mass-radius, M(R), relation of General Relativity. We identify how
these relations depend on the microscopic scalar couplings, agreeing with
earlier workers when comparisons are possible. Explicit analytical solutions
are obtained for the instructive toy model of constant-density stars, whose
properties we compare to more realistic equations of state for neutron star
models.Comment: 39 pages, 9 figure
Faraday rotation spectra of bismuth-substituted ferrite garnet films with in-plane magnetization
Single crystalline films of bismuth-substituted ferrite garnets have been
synthesized by the liquid phase epitaxy method where GGG substrates are dipped
into the flux. The growth parameters are controlled to obtain films with
in-plane magnetization and virtually no domain activity, which makes them
excellently suited for magnetooptic imaging. The Faraday rotation spectra were
measured across the visible range of wavelengths. To interprete the spectra we
present a simple model based on the existence of two optical transitions of
diamagnetic character, one tetrahedral and one octahedral. We find excellent
agreement between the model and our experimental results for photon energies
between 1.77 and 2.53 eV, corresponding to wavelengths between 700 and 490 nm.
It is shown that the Faraday rotation changes significantly with the amount of
substituted gallium and bismuth. Furthermore, the experimental results suggest
that the magnetooptic response changes linearly with the bismuth substitution.Comment: 15 pages, 6 figures, published in Phys. Rev.
Magnesium and Aluminium alloys Dissimilar Joining by Friction Stir Welding
Abstract Multi-material lightweight structures are gaining a great deal of attention in several industries, in particular where a trade-off between reduced weight, improved performances, and cost compression is required. Magnesium alloys, such as the zinc-rare earth elements ZE41A alloy, fulfill the first two requirements; however, they are susceptible to corrosion and relatively expensive. Lightweight structures hybridization, for instance combining Magnesium alloys and Aluminium alloys, is currently under consideration as a potential solution to this problem. Nevertheless, dissimilar joining of Magnesium and Aluminium alloys is challenging due to the significant differences in physical properties, as well as to the precipitation of brittle intermetallic compounds, such as Al 12 Mg 17 and Al 3 Mg 2 . In this study, the dissimilar joining of Magnesium and Aluminium alloys by friction stir welding process is discussed. In particular, 4 mm thick plates of ZE41A Mg alloy and AA2024-T3 Al alloy were welded in the butt joint configuration. The feasibility of the process was assessed by means of microstructure and mechanical analysis. The formation of brittle intermetallic compounds was investigated as well
Nonextensivity in Geological Faults?
Geological fault systems, as the San Andreas fault (SAF) in USA, constitute
typical examples of self-organizing systems in nature. In this paper, we have
considered some geophysical properties of the SAF system to test the viability
of the nonextensive models for earthquakes developed in [Phys. Rev. E {\bf 73},
026102, 2006]. To this end, we have used 6188 earthquakes events ranging in the
magnitude interval that were taken from the Network Earthquake
International Center catalogs (NEIC, 2004-2006) and the Bulletin of the
International Seismological Centre (ISC, 1964-2003). For values of the Tsallis
nonextensive parameter , it is shown that the energy
distribution function deduced in above reference provides an excellent fit to
the NEIC and ISC SAF data.Comment: 9 pages, 1 figure, standard LaTeX fil
Five Dimensional Cosmological Models in General Relativity
A Five dimensional Kaluza-Klein space-time is considered in the presence of a
perfect fluid source with variable G and . An expanding universe is
found by using a relation between the metric potential and an equation of
state. The gravitational constant is found to decrease with time as whereas the variation for the cosmological constant follows as
, and
where is the equation of state parameter and is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy
Adsorption-desorption kinetics in nanoscopically confined oligomer films under shear
The method of molecular dynamics computer simulations is employed to study oligomer melts confined in ultra-thin films and subjected to shear. The focus is on the self-diffusion of oligomers near attractive surfaces and on their desorption, together with the effects of increasing energy of adsorption and shear. It is found that the mobility of the oligomers near an attractive surface is strongly decreased. Moreover, although shearing the system forces the chains to stretch parallel to the surfaces and thus increase the energy of adsorption per chain, flow also promotes desorption. The study of chain desorption kinetics reveals the molecular processes responsible for the enhancement of desorption under shear. They involve sequences of conformations starting with a desorbed tail and proceeding in a very fast, correlated, segment-by-segment manner to the desorption of the oligomers from the surfaces.
Dislocation-Mediated Melting: The One-Component Plasma Limit
The melting parameter of a classical one-component plasma is
estimated using a relation between melting temperature, density, shear modulus,
and crystal coordination number that follows from our model of
dislocation-mediated melting. We obtain in good agreement
with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe
- …