72 research outputs found

    Maternal serum levels of pregnancy—associated murine-l (PAMP—l) during pregnancy in the rabbit

    Get PDF
    An ELISA was developed to measure for the first time serum levels of Pregnancy—Associated Murine Protein- 1 (PAMP—l) throughout pregnancy in the rabbit. In rodents serum levels of PAMP-l are regulated by growth hormone Unlike the pregnancy-assoeiated rise in serum levels in pregnant mice and rats, PAMP-l did not increase significantly during pregnancy in the rabbit

    Haematologic and Clinical Chemical values in 3 and 6 months old Göttingen minipigs

    Get PDF
    Blood samples were collected from sixty healthy Göttingen minipigs. fifteen males and fifteen females at the age of three months and fifteen males and fifteen females at the age of six months. The samples were taken at the breeder’s facilities. The samples were analysed for nineteen haematological and twenty~six clinical chemical parameters. Means, standard deviations and lowest and highest values are presented. In general the parameters were comparable with those reponed for other breeds of miniature and domestic swine. The white blood cell count, the percentages of neutrophils and monocytes and serum globulin levels were lower in these microbiologically defined minipigs compared with conventionally rearedpigs and minipigs. Three litter mates had a complex of abnormally high serum creatine kinase, lactate dehydrogenase, uspartate aminotransterase and alanine aminotmnsferase levels

    Modulation of aggression in male mice: influence of group size and cage size

    Get PDF
    Aggression in group-housed male mice is known to be influenced by both cage size and group size. However, the interdependency of these two parameters has not been studied yet. In this study, the level of aggression in groups of three, five, or eight male BALB/c mice housed in cages with a floor size of either 80 or 125 cm2/animal was estimated weekly after cage cleaning for a period of 14 weeks. Furthermore, urine corticosterone levels, food and water intake, body weight, and number of wounds were measured weekly. At the end of the experiment, tyrosine hydroxylase (TH) activity, testosterone levels, and weight of spleen, thymus, testes, and seminal vesicles were determined. Results indicate a moderate increase of intermale aggression in larger cages when compared to the smaller cages. Aggression in groups of eight animals was considerably higher than in groups of three animals. The increase of agonistic behavior was observed both in dominant and subordinate animals. Physiological parameters indicate differences in stress levels between dominant and subordinate animals. It is concluded that aggressive behavior in group-housed male BALB/c mice is best prevented by housing the animals in small groups of three to five animals, while decreasing floor size per animal may be used as a temporary solution to decrease high levels of aggression in an existing social group.

    Patterns of Early Gut Colonization Shape Future Immune Responses of the Host

    Get PDF
    The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system

    Prevention of Diabetes in NOD Mice by Repeated Exposures to a Contact Allergen Inducing a Sub-Clinical Dermatitis

    Get PDF
    BACKGROUND: Type 1 diabetes is an autoimmune disease, while allergic contact dermatitis although immune mediated, is considered an exposure driven disease that develops due to epicutaneous contact with reactive low-molecular chemicals. The objective of the present study was to experimentally study the effect of contact allergens on the development of diabetes in NOD mice. As the link between contact allergy and diabetes is yet unexplained we also examined the effect of provocation with allergens on Natural Killer T (NKT) cells, since involvement of NKT cells could suggest an innate connection between the two diseases. METHOD: NOD mice 4 weeks of age were exposed, on the ears, to two allergens, p-phenylenediamine and 2,4-dinitrochlorobenzene respectively, to investigate the diabetes development. The mice were followed for a maximum of 32 weeks, and they were either repeatedly exposed to the allergens or only sensitized a week after arrival. The stimulation of NKT cells by the two allergens were additionally studied in C57BL/6 mice. The mice were sensitized and two weeks later provocated with the allergens. The mice were subsequently euthanized at different time points after the provocation. RESULTS: It was found that repeated application of p-phenylenediamine reduced the incidence of diabetes compared to application with water (47% vs. 93%, P = 0.004). Moreover it was shown that in C57BL/6 mice both allergens resulted in a slight increment in the quantity of NKT cells in the liver. Application of the allergens at the same time resulted in an increased number of NKT cells in the draining auricular lymph node, and the increase appeared to be somewhat allergen specific as the accumulation was stronger for p-phenylenediamine. CONCLUSION: The study showed that repeated topical application on the ears with a contact allergen could prevent the development of diabetes in NOD mice. The contact allergens gave a non-visible, sub-clinical dermatitis on the application site. The preventive effect on diabetes may be due to stimulation of peripheral NKT cells, as shown for provocation with p-phenylenediamine in the C57BL/6 mouse. This epicutaneous procedure may lead to new strategies in prevention of type 1 diabetes in humans

    Alcohol Facilitates CD1d Loading, Subsequent Activation of NKT Cells, and Reduces the Incidence of Diabetes in NOD Mice

    Get PDF
    Background: Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. Methods: The study included cellular in vitro tests using α-galactosylceramide (αGalCer), and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. Results: Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05). CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05), whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. Conclusion: Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases

    Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Get PDF
    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey
    corecore