12 research outputs found
Infrared chemical imaging through nondegenerate two-photon absorption in silicon-based cameras
Chemical imaging based on mid-infrared (MIR) spectroscopic contrast is an
important technique with a myriad of applications, including biomedical imaging
and environmental monitoring. Current MIR cameras, however, lack in performance
and are much less affordable compared to mature Si-based devices, which operate
in the visible and near-infrared. Here we demonstrate fast MIR chemical imaging
through non-degenerate two-photon absorption (NTA) in a standard Si-based
charge-coupled device (CCD). We show that wide-field MIR images can be obtained
at 100 ms exposure times using picosecond pulse energies of only a few fJ per
pixel through NTA directly on the CCD chip. Because this on-chip approach does
not rely on phase-matching, it is alignment-free and does not necessitate
complex post-processing of the images. We emphasize the utility of this
technique through chemically selective MIR imaging of polymers and biological
samples, including MIR videos of moving targets, physical processes and live
nematodes
Complex Evolutionary History of the Aeromonas veronii Group Revealed by Host Interaction and DNA Sequence Data
Aeromonas veronii biovar sobria, Aeromonas veronii biovar veronii, and Aeromonas allosaccharophila are a closely related group of organisms, the Aeromonas veronii Group, that inhabit a wide range of host animals as a symbiont or pathogen. In this study, the ability of various strains to colonize the medicinal leech as a model for beneficial symbiosis and to kill wax worm larvae as a model for virulence was determined. Isolates cultured from the leech out-competed other strains in the leech model, while most strains were virulent in the wax worms. Three housekeeping genes, recA, dnaJ and gyrB, the gene encoding chitinase, chiA, and four loci associated with the type three secretion system, ascV, ascFG, aexT, and aexU were sequenced. The phylogenetic reconstruction failed to produce one consensus tree that was compatible with most of the individual genes. The Approximately Unbiased test and the Genetic Algorithm for Recombination Detection both provided further support for differing evolutionary histories among this group of genes. Two contrasting tests detected recombination within aexU, ascFG, ascV, dnaJ, and gyrB but not in aexT or chiA. Quartet decomposition analysis indicated a complex recent evolutionary history for these strains with a high frequency of horizontal gene transfer between several but not among all strains. In this study we demonstrate that at least for some strains, horizontal gene transfer occurs at a sufficient frequency to blur the signal from vertically inherited genes, despite strains being adapted to distinct niches. Simply increasing the number of genes included in the analysis is unlikely to overcome this challenge in organisms that occupy multiple niches and can exchange DNA between strains specialized to different niches. Instead, the detection of genes critical in the adaptation to specific niches may help to reveal the physiological specialization of these strains
Recommended from our members
High-resolution infrared imaging of biological samples with third-order sum-frequency generation microscopy.
We studied the use of vibrationally resonant, third-order sum-frequency generation (TSFG) for imaging of biological samples. We found that laser-scanning TSFG provides vibrationally sensitive imaging capabilities of lipid droplets and structures in sectioned tissue samples. Although the contrast is based on the infrared-activity of molecular modes, TSFG images exhibit a high lateral resolution of 0.5 µm or better. We observed that the imaging properties of TSFG resemble the imaging properties of coherent anti-Stokes Raman scattering (CARS) microscopy, offering a nonlinear infrared alternative to coherent Raman methods. TSFG microscopy holds promise as a high-resolution imaging technique in the fingerprint region where coherent Raman techniques often provide insufficient sensitivity
Recommended from our members
Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras.
Chemical imaging based on mid-infrared (MIR) spectroscopic contrast is an important technique with a myriad of applications, including biomedical imaging and environmental monitoring. Current MIR cameras, however, lack performance and are much less affordable than mature Si-based devices, which operate in the visible and near-infrared regions. Here, we demonstrate fast MIR chemical imaging through non-degenerate two-photon absorption (NTA) in a standard Si-based charge-coupled device (CCD). We show that wide-field MIR images can be obtained at 100 ms exposure times using picosecond pulse energies of only a few femtojoules per pixel through NTA directly on the CCD chip. Because this on-chip approach does not rely on phase matching, it is alignment-free and does not necessitate complex postprocessing of the images. We emphasize the utility of this technique through chemically selective MIR imaging of polymers and biological samples, including MIR videos of moving targets, physical processes and live nematodes
Association analyses identify 31 new risk loci for colorectal cancer susceptibility
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, and has a strong heritable basis. We report a genome-wide association analysis of 34,627 CRC cases and 71,379 controls of European ancestry that identifies SNPs at 31 new CRC risk loci. We also identify eight independent risk SNPs at the new and previously reported European CRC loci, and a further nine CRC SNPs at loci previously only identified in Asian populations. We use in situ promoter capture Hi-C (CHi-C), gene expression, and in silico annotation methods to identify likely target genes of CRC SNPs. Whilst these new SNP associations implicate target genes that are enriched for known CRC pathways such as Wnt and BMP, they also highlight novel pathways with no prior links to colorectal tumourigenesis. These findings provide further insight into CRC susceptibility and enhance the prospects of applying genetic risk scores to personalised screening and prevention.Peer reviewe