200 research outputs found

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ характСристика Ρ‚ΠΎΡ€Ρ„ΠΎΠ² Вомской области ΠΈ рСспублики Алтай

    Get PDF
    Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ характСристика Ρ‚ΠΎΡ€Ρ„ΠΎΠ² Вомской области ΠΈ рСспублики Алтай. Для этих Ρ‚ΠΎΡ€Ρ„ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ тСхничСский ΠΈ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠΉ составы. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ исслСдований выявлСно, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ€Ρ„Π° с мСстороТдСний Вомской области ΠΈ рСспублики Алтай ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΏΠΎ стСпСни разлоТСния ΠΈ Π·ΠΎΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Π’ Ρ‚ΠΎΡ€Ρ„Π°Ρ… рСспублики Алтай ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ большСС содСрТаниС Π³ΡƒΠΌΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΈ Π»ΠΈΠ³Π½ΠΈΠ½Π° ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚ΠΎΡ€Ρ„Π°ΠΌΠΈ Вомской области . ΠšΡ€ΠΎΠΌΠ΅ этого, Π² Ρ‚ΠΎΡ€Ρ„Π°Ρ… рСспублики Алтай выявлСно Π½ΠΈΠ·ΠΊΠΎΠ΅ содСрТаниС Π±ΠΈΡ‚ΡƒΠΌΠΎΠ² ΠΈ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ комплСкса ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ΅ содСрТаниС Π³ΡƒΠΌΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΈ Π»ΠΈΠ³Π½ΠΈΠ½Π°. УстановлСно, Ρ‡Ρ‚ΠΎ Π½Π° Π±Π°Π·Π΅ мСстороТдСний рСспублики Алтай Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° организация производства Π³ΡƒΠΌΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΈ Π±ΠΈΡ‚ΡƒΠΌΠΎΠ² Π² ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€Π°Ρ….In this work the comparative characteristic of peats of the Tomsk region and Altai Republic has been carried out. For these peats, the technical and group compositions were determined. As a result of the researches it is revealed that peats from deposits of the Tomsk region and Altai Republic differ on extent of decomposition and an ash-content. In peats of Altai Republic have received the bigger content of humic acids and a lignin in comparison with peats of the Tomsk region. Besides, in peats of Altai Republic the low content of bitumens and a carbohydrate complex and the increased content of humic acids and a lignin is revealed. It is established that on the basis of fields of Altai Republic the organization of production of humic acids and bitumens in limited sizes is possible

    Analysis of 2D airglow imager data with respect to dynamics using machine learning

    Get PDF
    We demonstrate how machine learning can be easily applied to support the analysis of large quantities of excited hydroxyl (OH*) airglow imager data. We use a TCN (temporal convolutional network) classification algorithm to automatically pre-sort images into the three categories β€œdynamic” (images where small-scale motions like turbulence are likely to be found), β€œcalm” (clear-sky images with weak airglow variations) and β€œcloudy” (cloudy images where no airglow analyses can be performed). The proposed approach is demonstrated using image data of FAIM 3 (Fast Airglow IMager), acquired at Oberpfaffenhofen, Germany, between 11 June 2019 and 25 February 2020, achieving a mean average precision of 0.82 in image classification. The attached video sequence demonstrates the classification abilities of the learned TCN. Within the dynamic category, we find a subset of 13 episodes of image series showing turbulence. As FAIM 3 exhibits a high spatial (23 m per pixel) and temporal (2.8 s per image) resolution, turbulence parameters can be derived to estimate the energy diffusion rate. Similarly to the results the authors found for another FAIM station (Sedlak et al., 2021), the values of the energy dissipation rate range from 0.03 to 3.18 W kgβˆ’1

    Schallemissionsanalyse zur Untersuchung des SchΓ€digungsverhaltens im Auszugversuch eines in Beton eingebetteten Multifilamentgarns

    Get PDF
    Zur Untersuchung der SchΓ€digungs- und Versagensmechanismen eines in Beton eingebetteten Multifilamentgarns im Auszugversuch wurde die Schallemissionsanalyse zur Identifizierung und Lokalisierung von FilamentbrΓΌchen eingesetzt. Im ersten Schritt wurden dazu die Schall emittierenden Ursachen (Filamentriss, FilamentablΓΆsung und Mikroriss im Beton) fΓΌr eine Differenzierung charakterisiert. Es wurden Versuche zur Erzeugung von isolierten Signalen durchgefΓΌhrt, welche mit Hilfe der Signal- und Frequenzanalyse untersucht wurden. Bei dem durchgefΓΌhrten Garnauszugversuch konnte eine hohe Lokalisierungsgenauigkeit der FilamentbrΓΌche erzielt werden. Der SchΓ€digungsverlauf des Garns wΓ€hrend des Auszugversuchs konnte detailliert untersucht werden

    Deformation around neutron-rich Cr isotopes in axially symmetric Skyrme-Hatree-Fock-Bogoliubov method

    Full text link
    We analyse deformation mechanism in neutron-rich Cr, Fe and Ti isotopes with N=32-44 by means of a Skyrme-Hartree-Fock-Bogoliubov mean-field code employing a two-dimensional mesh representation in the cylindrical coordinate system. Evaluating systematically the quadrupole deformation energy, we show that the Skyrme parameter set SkM* gives a quadrupole instability around the neutron number N∼\sim38-42 in Cr isotopes, where the deformation energy curve suggests a transitional behavior with a shallow minimum extending to a large prolate deformation. Roles of a deformed N=38 gap and the position of the neutron g9/2 orbit are analysed in detail

    Discovery of the Cadmium Isotopes

    Full text link
    Thirty-seven cadmium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.Comment: to be published in Atomic Data and Nuclear Data Table

    Spuren der durch die Eruption des Hunga Tonga-Hunga Ha'apai ausgelΓΆsten Druckwelle auch in der Mittleren AtmosphΓ€re ΓΌber Europa

    Get PDF
    On January 15th 2022 the Hunga Tonga – Hunga Ha'apai volcano erupted and generated strong atmospheric pressure waves of which some propagated several times across the globe. At the Environmental Research Station β€œSchneefernerhaus” (UFS), as well as in whole Europe, signals could be detected even at MLT (Mesosphere-Lower-Thermosphere) heights (80-100 km) using the GRIPS (GRound-based Infrared P-branch Spectrometer) and the BAIER (Bavarian Airglow ImagER) instruments for the observation of the OH and the O2 airglow
    • …
    corecore