6 research outputs found

    A potential relationship between MMP-9 rs2250889 and ischemic stroke susceptibility

    Get PDF
    PurposeIschemic stroke (IS), a serious cerebrovascular disease, greatly affects people's health and life. Genetic factors are indispensable for the occurrence of IS. As a biomarker for IS, the MMP-9 gene is widely involved in the pathophysiological process of IS. This study attempts to find out the relationship between MMP-9 polymorphisms and IS susceptibility.MethodsA total of 700 IS patients and 700 healthy controls were recruited. The single nucleotide polymorphism (SNP) markers of the MMP-9 gene were genotyped by the MassARRAY analyzer. Multifactor dimensionality reduction (MDR) was applied to generate SNP–SNP interaction. Furthermore, the relationship between genetic variations (allele and genotype) of the MMP-9 gene and IS susceptibility was analyzed by calculating odds ratios (ORs) and 95% confidence intervals (CIs).ResultsOur results demonstrated that rs2250889 could significantly increase the susceptibility to IS in the codominant, dominant, overdominant, and log-additive models (p < 0.05). Further stratification analysis showed that compared with the control group, rs2250889 was associated with IS risk in different case groups (age, female, smoking, and non-drinking) (p < 0.05). Based on MDR analysis, rs2250889 was the best model for predicting IS risk (cross-validation consistency: 10/10, OR = 1.56 (1.26–1.94), p < 0.001).ConclusionOur study preliminarily confirmed that SNP rs2250889 was significantly associated with susceptibility to IS

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore