69 research outputs found
A world dataset on the geographic distributions of Solenidae razor clams (Mollusca: Bivalvia)
A world dataset on geographic distributions of Solenida
Potential geographic shifts in the coral reef ecosystem under climate change
The coral reefs are the most diverse marine ecosystem in the world. Considering its contribution as a natural resource for humanity and global biodiversity, it is critical to understand its response to climatic change. To date, no global predictions have been made about potential ecosystem changes in relation to its inhabiting species. Predicting changes in species' climatic suitability under increasing temperature and comparing them among species would be the first step in understanding the geographic and taxonomic coherence and discrepancies that may occur within the ecosystem. Using 57 species-specific global climate suitability models (of corals, molluscs, fish, crustaceans, and polychaetes) under present and future climate scenarios (RCP 4.5 and 8.5), we compared the potential coherence and differences and their cumulative impact on the ecosystem in warm, cold, shallow, and deep waters. Under the climatic scenarios, nearly 90% of 30 warm-water species were predicted to lose their suitability in the parts of the Indo-west Pacific, the Coast of Northern Australia, the South China Sea, the Caribbean Sea, and the Gulf of Mexico, resulting in the overall southward shift in their distributions. In contrast, a mixed response occurred in 27 cold-water species, with most northern temperate/boreal ones increasing their suitability in the Arctic Ocean and the Arctic species declining overall. We noticed that irrespective of their taxonomic group, the species with wider distribution ranges (thermal and geographic) had larger predicted gains in their suitability than their stenothermal counterparts, suggesting an increase of generalist species and a decline of specialist (endemic) species of the ecosystem under a warming climate. Our coherent projections of species' climatic suitability in warm and cold habitats of the tropics, temperate, boreal, and the Arctic, represent significant taxonomic groups of the ecosystem. This might indicate mass extinction risk (local– in the tropics and northern temperate regions, and overall– in the Arctic) in native habitats and a high species turnover across the ecosystem under a warming climate. This may also destabilise predator–prey dynamics in the ecosystem, especially if foraging specialists dominate coral food webs and adversely affect the associated countries. Our global projections highlight the regions of species’ potential loss and gain; stakeholders could use the information to protect biodiversity and maintain human well-being
Abundance and distributional patterns of benthic peracarid crustaceans from the Atlantic sector of the Southern Ocean and Weddell Sea
Climate change is influencing some environmental variables in the Southern Ocean (SO) and this will have an effect on the marine biodiversity. Peracarid crustaceans are one of the dominant and most species-rich groups of the SO benthos. To date, our knowledge on the influence of environmental variables in shaping abundance and species composition in the SO’s peracarid assemblages is limited, and with regard to ice coverage it is unknown. The aim of our study was to assess the influence of sea ice coverage, chlorophyll-a, and phytoplankton concentrations on abundance, distribution and assemblage structure of peracarids. In addition, the influence of other physical parameters on peracarid abundance was assessed, including depth, temperature, salinity, sediment type, current velocity, oxygen, iron, nitrate, silicate and phosphate. Peracarids were sampled with an epibenthic sledge (EBS) in different areas of the Atlantic sector of the SO and in the Weddell Sea. Sampling areas were characterized by different regimes of ice coverage (the ice free South Orkney Islands, the seasonally ice-covered Filchner Trough and the Eastern Antarctic Peninsula including the Prince Gustav Channel which was formerly covered by a perennial ice shelf). In total 64766 individuals of peracarids were collected and identified to order level including five orders: Amphipoda, Cumacea, Isopoda, Mysidacea, and Tanaidacea. Amphipoda was the most abundant taxon, representing 32% of the overall abundances, followed by Cumacea (31%), Isopoda (29%), Mysidacea (4%), and Tanaidacea (4%). The Filchner Trough had the highest abundance of peracarids, while the South Orkney Islands showed the lowest abundance compared to other areas. Ice coverage was the main environmental driver shaping the abundance pattern and assemblage structure of peracarids and the latter were positively correlated with ice coverage and chlorophyll-a concentration. We propose that the positive correlation between sea ice and peracarid abundances is likely due to phytoplankton blooms triggered by seasonal sea ice melting, which might increase the food availability for benthos. Variations in ice coverage extent and seasonality due to climate change would strongly influence the abundance and assemblage structure of benthic peracarids
Co - designing marine science beyond good intentions: support stakeholders’ empowerment in transformative pathways
Calls for science to innovate by including stakeholders' in the creation of marine knowledge have been rising, to create impact beyond laboratories and to contribute to the empowerment of local communities when interacting with marine and coastal ecosystems. As a transdisciplinary group of scientists working on co-designing research projects, this paper draws upon our experiences to further define the concept and seek to improve the process of co-design. We highlight the key barriers for co-design processes to contribute to increasing stakeholders' capacity to produce intended effects on marine policy. We suggest that stakeholder engagement requires overcoming the resistance to non-scientific knowledge sources and considering power asymmetries in the governance and management of the ocean. We argue that power and politics must be placed at the very heart of the production of a co-designed marine science and must be an aspect of the facilitation itself. In this paper, we aim to provide insights to navigate throughout the journey of stakeholder engagement, with the critical perspective necessary to make this process socially and environmentally effective
Responses of Southern Ocean seafloor habitats and communities to global and local drivers of change
Knowledge of life on the Southern Ocean seafloor has substantially grown since the beginning of this century with increasing ship-based surveys and regular monitoring sites, new technologies and greatly enhanced data sharing. However, seafloor habitats and their communities exhibit high spatial variability and heterogeneity that challenges the way in which we assess the state of the Southern Ocean benthos on larger scales. The Antarctic shelf is rich in diversity compared with deeper water areas, important for storing carbon (“blue carbon”) and provides habitat for commercial fish species. In this paper, we focus on the seafloor habitats of the Antarctic shelf, which are vulnerable to drivers of change including increasing ocean temperatures, iceberg scour, sea ice melt, ocean acidification, fishing pressures, pollution and non-indigenous species. Some of the most vulnerable areas include the West Antarctic Peninsula, which is experiencing rapid regional warming and increased iceberg-scouring, subantarctic islands and tourist destinations where human activities and environmental conditions increase the potential for the establishment of non-indigenous species and active fishing areas around South Georgia, Heard and MacDonald Islands. Vulnerable species include those in areas of regional warming with low thermal tolerance, calcifying species susceptible to increasing ocean acidity as well as slow-growing habitat-forming species that can be damaged by fishing gears e.g., sponges, bryozoan, and coral species. Management regimes can protect seafloor habitats and key species from fishing activities; some areas will need more protection than others, accounting for specific traits that make species vulnerable, slow growing and long-lived species, restricted locations with optimum physiological conditions and available food, and restricted distributions of rare species. Ecosystem-based management practices and long-term, highly protected areas may be the most effective tools in the preservation of vulnerable seafloor habitats. Here, we focus on outlining seafloor responses to drivers of change observed to date and projections for the future. We discuss the need for action to preserve seafloor habitats under climate change, fishing pressures and other anthropogenic impacts
IPBES Invasive Alien Species Assessment: Chapter 1. Introducing biological invasions and the IPBES thematic assessment of invasive alien species and their control
Chapter 1: Introducing biological invasions and the IPBES thematic assessment of invasive alien species and their control of the Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses
Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem
REVIEW OF THE CENTRAL AND SOUTH ATLANTIC SHELF AND DEEP-SEA BENTHOS: SCIENCE, POLICY, AND MANAGEMENT
The Central and South Atlantic represents a vast ocean area and is home to a diverse range of ecosystems and species. Nevertheless, and similar to the rest of the global south, the area is comparatively understudied yet exposed to increasing levels of multisectoral pressures. To counteract this, the level of scientific exploration in the Central and South Atlantic has increased in recent years and will likely continue to do so within the context of the United Nations (UN) Decade of Ocean Science for Sustainable Development. Here, we compile the literature to investigate the distribution of previous scientific exploration of offshore (30 m+) ecosystems in the Central and South Atlantic, both within and beyond national jurisdiction, allowing us to synthesise overall patterns of biodiversity. Furthermore, through the lens of sustainable management, we have reviewed the existing anthropogenic activities and associated management measures relevant to the region. Through this exercise, we have identified key knowledge gaps and undersampled regions that represent priority areas for future research and commented on how these may be best incorporated into, or enhanced through, future management measures such as those in discussion at the UN Biodiversity Beyond National Jurisdiction negotiations. This review represents a comprehensive summary for scientists and managers alike looking to understand the key topographical, biological, and legislative features of the Central and South Atlantic.This paper is an output of the UN Ocean Decade endorsed Challenger 150 Programme (#57).
Challenger 150 is supported by the Deep Ocean Stewardship Initiative (DOSI) and the Scientific
Committee on Oceanic Research’s (SCOR) working group 159 (NSF Grant OCE-1840868) for
which KLH is co-chair. AEHB, KLH, KAM, SBu, and KS are supported by the UKRI funded
One Ocean Hub NE/S008950/1. TA is supported by the BiodivRestore ERA-NET Cofund (GA
N°101003777) with the EU and the following funding organisations: FCT, RFCT, AEI, DFG,
and ANR. TA also acknowledges financial support to CESAM by FCT/MCTES (UIDP/50017/2
020+UIDB/50017/2020+ LA/P/0094/2020) through national funds. NB is supported by the John
Ellerman Foundation. AB is supported by the German Research Foundation. DH, CO, AFB, LA,
SBr, and KS received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 818123 (iAtlantic); this output reflects only the author’s view
and the European Union cannot be held responsible for any use that may be made of the information contained therein. DH, AF, JT, and CW were additionally supported through the Cluster of
Excellence “The Ocean Floor – Earth’s Uncharted Interface” (EXC-2077 – 390741603 by Deutsche
Forschungsgemeinschaft). CO also extends thanks to the HWK – Institute for Advanced Study, and
PM to Dr. Alberto MartĂn, retired professor of Universidad SimĂłn BolĂvar in Caracas, Venezuela
for facilitating references used in the Venezuela section.Peer reviewe
- …