295 research outputs found
Assessing the effect of dynamics on the closed-loop protein-folding hypothesis
The closed-loop (loop-n-lock) hypothesis of protein folding suggests that loops of about 25 residues, closed through interactions between the loop ends (locks), play an important role in protein structure. Coarse-grain elastic network simulations, and examination of loop lengths in a diverse set of proteins, each supports a bias towards loops of close to 25 residues in length between residues of high stability. Previous studies have established a correlation between total contact distance (TCD), a metric of sequence distances between contacting residues (cf. contact order), and the log-folding rate of a protein. In a set of 43 proteins, we identify an improved correlation (
r
2
= 0.76), when the metric is restricted to residues contacting the locks, compared to the equivalent result when all residues are considered (
r
2
= 0.65). This provides qualified support for the hypothesis, albeit with an increased emphasis upon the importance of a much larger set of residues surrounding the locks. Evidence of a similar-sized protein core/extended nucleus (with significant overlap) was obtained from TCD calculations in which residues were successively eliminated according to their hydrophobicity and connectivity, and from molecular dynamics simulations. Our results suggest that while folding is determined by a subset of residues that can be predicted by application of the closed-loop hypothesis, the original hypothesis is too simplistic; efficient protein folding is dependent on a considerably larger subset of residues than those involved in lock formation.
</jats:p
Efficacy and safety of once-weekly and twice-weekly bortezomib in patients with relapsed systemic AL amyloidosis: results of a phase 1/2 study
AbstractThis first prospective phase 2 study of single-agent bortezomib in relapsed primary systemic AL amyloidosis evaluated the recommended (maximum planned) doses identified in phase 1 testing (1.6 mg/m2 once weekly [days 1, 8, 15, and 22; 35-day cycles]; 1.3 mg/m2 twice weekly [days 1, 4, 8, and 11; 21-day cycles]). Among all 70 patients enrolled in the study, 44% had ≥ 3 organs involved, including 73% and 56% with renal and cardiac involvement. In the 1.6 mg/m2 once-weekly and 1.3 mg/m2 twice-weekly groups, the hematologic response rate was 68.8% and 66.7% (37.5% and 24.2% complete responses, respectively); median time to first/best response was 2.1/3.2 and 0.7/1.2 months, and 78.8% and 75.5% had response durations of ≥ 1 year, respectively. One-year hematologic progression-free rates were 72.2% and 74.6%, and 1-year survival rates were 93.8% and 84.0%, respectively. Outcomes appeared similar in patients with cardiac involvement. Among all 70 patients, organ responses included 29% renal and 13% cardiac responses. Rates of grade ≥ 3 toxicities (79% vs 50%) and discontinuations/dose reductions (38%/53% vs 28%/22%) resulting from toxicities appeared higher with 1.3 mg/m2 twice-weekly versus 1.6 mg/m2 once-weekly dosing. Both bortezomib dose schedules represent active, well-tolerated regimens in relapsed AL amyloidosis. This study was registered at www.clinicaltrials.gov as #NCT00298766
Increasing p-type dye sensitised solar cell photovoltages using polyoxometalates
Lindqvist polyoxometalate (POM) additives increase VOC in p-type DSSCs by up to 140%, yielding substantial efficiency gains for poorly matched dyes and redox mediators. For better dye/electrolyte combinations, these gains are typically outweighed by losses in JSC. Charge lifetime and transient IR measurements show that this is due to retardation of both recombination and electron transfer to the mediator, and a positive shift in the NiO valence band edge. The POMs also show their own, limited sensitizing effect
Melflufen and dexamethasone in heavily pretreated relapsed and refractory multiple myeloma
Clinical trial information: NCT02963493Altres ajuts: Oncopeptides A
Preconception Care in International Settings
Objectives: This literature review briefly describes international programs, policies, and activities related to preconception care and resulting pregnancy outcomes. Methods: Electronic databases were searched and findings supplemented with secondary references cited in the original articles as well as textbook chapters, declarations, reports, and recommendations. Results: Forty-two articles, book chapters, declarations, and other published materials were reviewed. Policies, programs, and recommendations related to preconceptional health promotion exist worldwide and comprise a readily identifiable component of historic and modern initiatives pertaining to women's health, reproductive freedom, and child survival. Conclusions: The integration of preconception care services within a larger maternal and child health continuum of care is well aligned with a prevention-based approach to enhancing global health
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …