5 research outputs found

    Chloroquine commonly induces hormetic dose responses

    Get PDF
    The use of chloroquine in the treatment of COVID-19 has received considerable attention. The recent intense focus on this application of chloroquine stimulated an investigation into the effects of chloroquine at low doses on highly biologically-diverse models and whether it may induce hormetic-biphasic dose response effects. The assessment revealed that hormetic effects have been commonly induced by chloroquine, affecting numerous cell types, including tumor cell lines (e.g. human breast and colon) and non-tumor cell lines, enhancing viral replication, spermmotility, various behavioral endpoints aswell as decreasing risks of convulsions, and enhancing a spectrum of neuroprotective responses within a preconditioning experimental framework. These diverse and complex findings indicate that hormetic dose responses commonly occur with chloroquine treatment with a range of biologicalmodels and endpoints. These findings have implications concerning study design features including the number and spacing of doses, and suggest a range of possible clinical concerns and opportunities depending on the endpoint considered. (C) 2020 Elsevier B.V. All rights reserved

    Immunomodulation Through Low-Dose Radiation for Severe COVID-19:Lessons From the Past and New Developments

    Get PDF
    Low-dose radiation therapy (LD-RT) has historically been a successful treatment for pneumonia and is clinically established as an immunomodulating therapy for inflammatory diseases. The ongoing COVID-19 pandemic has elicited renewed scientific interest in LD-RT and multiple small clinical trials have recently corroborated the historical LD-RT findings and demonstrated preliminary efficacy and immunomodulation for the treatment of severe COVID-19 pneumonia. The present review explicates archival medical research data of LD-RT and attempts to translate this into modernized evidence, relevant for the COVID-19 crisis. Additionally, we explore the putative mechanisms of LD-RT immunomodulation, revealing specific downregulation of proinflammatory cytokines that are integral to the development of the COVID-19 cytokine storm induced hyperinflammatory state. Radiation exposure in LD-RT is minimal compared to radiotherapy dosing standards in oncology care and direct toxicity and long-term risk for secondary disease are expected to be low. The recent clinical trials investigating LD-RT for COVID-19 confirm initial treatment safety. Based on our findings we conclude that LD-RT could be an important treatment option for COVID-19 patients that are likely to progress to severity. We advocate the further use of LD-RT in carefully monitored experimental environments to validate its effectiveness, risks and mechanisms of LD-RT

    Cytotoxicity models of Huntington's disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies.

    Get PDF
    Abstract This paper assesses in vivo cytotoxicity models of Huntington's disease (HD). Nearly 150 agents were found to be moderately to highly effective in mitigating the pathological sequelae of cytotoxic induction of HD features in multiple rodent models. Typically, rodents are treated with a prospective HD-protective agent before, during, or after the application of a chemical or transgenic process for inducing histopathological and behavioral symptoms of HD. Although transgenic and knockout rodent models (1) display relatively high construct and face validity, and (2) are ever more routinely employed to mimic genetic-to-phenotypic expression of HD features, toxicant models are also often employed, and have served as valuable test beds for the elucidation of biochemical processes and discovery of therapeutic targets in HD. Literature searches of the toxicant HD rodent models yielded nearly 150 agents that were moderately to highly effective in mitigating pathological sequelae in multiple mouse and rat HD models. Experimental models, study designs, and exposure protocols (e.g., pre- and post-conditioning) used in testing these agents were assessed, including dosing strategies, endpoints, and dose-response features. Hormetic-like biphasic dose responses, chemoprotective mechanisms, and the translational relevance of the preclinical studies and their therapeutic implications are critically analyzed in the present report. Notably, not one of the 150 agents that successfully delayed onset and progression of HD in the experimental models has been successfully translated to the treatment of humans in a clinical setting. Potential reasons for these translational failures are (1) the inadequacy of dose-response analyses and subsequent lack of useful dosing data; (2) effective rodent doses that are too high for safe human application; (3) key differences between the experimental models and humans in pharmacokinetic/pharmacodynamic features, ages and routes of agent administration; (4) lack of robust pharmacokinetic, mechanistic or systematic approaches to probe novel treatment strategies; and (5) inadequacies of the chemically induced HD model in rats to mimic accurately the complex genetic and developmental origin and progression of HD in humans. These deficiencies need to be urgently addressed if pharmaceutical agents for the treatment of HD are going to be successfully developed in experimental models and translated with fidelity to the clinic
    corecore