64 research outputs found

    Different activation signatures in the primary sensorimotor and higher-level regions for haptic three-dimensional curved surface exploration

    Get PDF
    Haptic object perception begins with continuous exploratory contact, and the human brain needs to accumulate sensory information continuously over time. However, it is still unclear how the primary sensorimotor cortex (PSC) interacts with these higher-level regions during haptic exploration over time. This functional magnetic resonance imaging (fMRI) study investigates time-dependent haptic object processing by examining brain activity during haptic 3D curve and roughness estimations. For this experiment, we designed sixteen haptic stimuli (4 kinds of curves x 4 varieties of roughness) for the haptic curve and roughness estimation tasks. Twenty participants were asked to move their right index and middle fingers along the surface twice and to estimate one of the two features -roughness or curvature -depending on the task instruction. We found that the brain activity in several higher-level regions (e.g., the bilateral posterior parietal cortex) linearly increased as the number of curves increased during the haptic exploration phase. Surprisingly, we found that the contralateral PSC was parametrically modulated by the number of curves only during the late exploration phase but not during the early exploration phase. In contrast, we found no similar parametric modulation activity patterns during the haptic roughness estimation task in either the contralateral PSC or in higher-level regions. Thus, our findings suggest that haptic 3D object perception is processed across the cortical hierarchy, whereas the contralateral PSC interacts with other higher-level regions across time in a manner that is dependent upon the features of the object

    Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex

    Get PDF
    The human brain coordinates a wide variety of motor activities. On a large scale, the cortical motor system is topographically organized such that neighboring body parts are represented by neighboring brain areas. This homunculus-like somatotopic organization along the central sulcus has been observed using neuroimaging for large body parts such as the face, hands and feet. However, on a finer scale, invasive electrical stimulation studies show deviations from this somatotopic organization that suggest an organizing principle based on motor actions rather than body part moved. It has not been clear how the action-map organization principle of the motor cortex in the mesoscopic (sub-millimeter) regime integrates into a body map organization principle on a macroscopic scale (cm). Here we developed and applied advanced mesoscopic (sub-millimeter) fMRI and analysis methodology to non-invasively investigate the functional organization topography across columnar and laminar structures in humans. Compared to previous methods, in this study, we could capture locally specific blood volume changes across entire brain regions along the cortical curvature. We find that individual fingers have multiple mirrored representations in the primary motor cortex depending on the movements they are involved in. We find that individual digits have cortical representations up to 3 ​mm apart from each other arranged in a column-like fashion. These representations are differentially engaged depending on whether the digits’ muscles are used for different motor actions such as flexion movements, like grasping a ball or retraction movements like releasing a ball. This research provides a starting point for non-invasive investigation of mesoscale topography across layers and columns of the human cortex and bridges the gap between invasive electrophysiological investigations and large coverage non-invasive neuroimaging

    Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex

    Get PDF
    When humans perceive a sensation, their brains integrate inputs from sensory receptors and process them based on their expectations. The mechanisms of this predictive coding in the human somatosensory system are not fully understood. We fill a basic gap in our understanding of the predictive processing of somatosensation by examining the layer-specific activity in sensory input and predictive feedback in the human primary somatosensory cortex (S1). We acquired submillimeter functional magnetic resonance imaging data at 7T (n = 10) during a task of perceived, predictable, and unpredictable touching sequences. We demonstrate that the sensory input from thalamic projects preferentially activates the middle layer, while the superficial and deep layers in S1 are more engaged for cortico-cortical predictive feedback input. These findings are pivotal to understanding the mechanisms of tactile prediction processing in the human somatosensory cortex

    High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1

    Get PDF
    Layer-dependent fMRI allows measurements of information flow in cortical circuits, as afferent and efferent connections terminate in different cortical layers. However, it is unknown to what level human fMRI is specific and sensitive enough to reveal directional functional activity across layers. To answer this question, we developed acquisition and analysis methods for blood-oxygen-level-dependent (BOLD) and cerebral-blood-volume (CBV)-based laminar fMRI and used these to discriminate four different tasks in the human motor cortex (M1). In agreement with anatomical data from animal studies, we found evidence for somatosensory and premotor input in superficial layers of M1 and for cortico-spinal motor output in deep layers. Laminar resting-state fMRI showed directional functional connectivity of M1 with somatosensory and premotor areas. Our findings demonstrate that CBV-fMRI can be used to investigate cortical activity in humans with unprecedented detail, allowing investigations of information flow between brain regions and outperforming conventional BOLD results that are often buried under vascular biases

    The art and science of using quality control to understand and improve fMRI data

    Get PDF
    Designing and executing a good quality control (QC) process is vital to robust and reproducible science and is often taught through hands on training. As FMRI research trends toward studies with larger sample sizes and highly automated processing pipelines, the people who analyze data are often distinct from those who collect and preprocess the data. While there are good reasons for this trend, it also means that important information about how data were acquired, and their quality, may be missed by those working at later stages of these workflows. Similarly, an abundance of publicly available datasets, where people (not always correctly) assume others already validated data quality, makes it easier for trainees to advance in the field without learning how to identify problematic data. This manuscript is designed as an introduction for researchers who are already familiar with fMRI, but who did not get hands on QC training or who want to think more deeply about QC. This could be someone who has analyzed fMRI data but is planning to personally acquire data for the first time, or someone who regularly uses openly shared data and wants to learn how to better assess data quality. We describe why good QC processes are important, explain key priorities and steps for fMRI QC, and as part of the FMRI Open QC Project, we demonstrate some of these steps by using AFNI software and AFNI’s QC reports on an openly shared dataset. A good QC process is context dependent and should address whether data have the potential to answer a scientific question, whether any variation in the data has the potential to skew or hide key results, and whether any problems can potentially be addressed through changes in acquisition or data processing. Automated metrics are essential and can often highlight a possible problem, but human interpretation at every stage of a study is vital for understanding causes and potential solutions

    Cortex-Wide Neural Dynamics Predict Behavioral States and Provide a Neural Basis for Resting-State Dynamic Functional Connectivity

    Get PDF
    Although resting-state functional magnetic resonance imaging (fMRI) studies have observed dynamically changing brain-wide networks of correlated activity, fMRI\u27s dependence on hemodynamic signals makes results challenging to interpret. Meanwhile, emerging techniques for real-time recording of large populations of neurons have revealed compelling fluctuations in neuronal activity across the brain that are obscured by traditional trial averaging. To reconcile these observations, we use wide-field optical mapping to simultaneously record pan-cortical neuronal and hemodynamic activity in awake, spontaneously behaving mice. Some components of observed neuronal activity clearly represent sensory and motor function. However, particularly during quiet rest, strongly fluctuating patterns of activity across diverse brain regions contribute greatly to interregional correlations. Dynamic changes in these correlations coincide with changes in arousal state. Simultaneously acquired hemodynamics depict similar brain-state-dependent correlation shifts. These results support a neural basis for dynamic resting-state fMRI, while highlighting the importance of brain-wide neuronal fluctuations in the study of brain state

    Time-varying whole-brain functional network connectivity coupled to task engagement

    Get PDF
    Brain functional connectivity (FC), as measured by blood oxygenation level-dependent (BOLD) signal, fluctuates at the scale of 10s of seconds. It has recently been found that whole-brain dynamic FC (dFC) patterns contain sufficient information to permit identification of ongoing tasks. Here, we hypothesize that dFC patterns carry fine-grained information that allows for tracking short-term task engagement levels (i.e., 10s of seconds long). To test this hypothesis, 25 subjects were scanned continuously for 25 min while they performed and transitioned between four different tasks: working memory, visual attention, math, and rest. First, we estimated dFC patterns by using a sliding window approach. Next, we extracted two engagement-specific FC patterns representing active engagement and passive engagement by using k-means clustering. Then, we derived three metrics from whole-brain dFC patterns to track engagement level, that is, dissimilarity between dFC patterns and engagement-specific FC patterns, and the level of brainwide integration level. Finally, those engagement markers were evaluated against windowed task performance by using a linear mixed effects model. Significant relationships were observed between abovementioned metrics and windowed task performance for the working memory task only. These findings partially confirm our hypothesis and underscore the potential of whole-brain dFC to track short-term task engagement levels. In this study, we hypothesized that whole-brain dynamic functional connectivity (FC) patterns carry fine-grained information that allows for tracking short-term task engagement levels. We derived three task engagement markers from whole-brain dynamic FC pattern, that is, dissimilarity between dynamic FC patterns and high/low-engagement FC patterns, as well as brainwide integration level. We employed a linear mixed effects model to relate those task engagement markers with short-term task performance, and confirmed our hypothesis with the working memory task

    The past, present, and future of the brain imaging data structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS
    • …
    corecore