67 research outputs found
Accurate HLA type inference using a weighted similarity graph
Abstract Background The human leukocyte antigen system (HLA) contains many highly variable genes. HLA genes play an important role in the human immune system, and HLA gene matching is crucial for the success of human organ transplantations. Numerous studies have demonstrated that variation in HLA genes is associated with many autoimmune, inflammatory and infectious diseases. However, typing HLA genes by serology or PCR is time consuming and expensive, which limits large-scale studies involving HLA genes. Since it is much easier and cheaper to obtain single nucleotide polymorphism (SNP) genotype data, accurate computational algorithms to infer HLA gene types from SNP genotype data are in need. To infer HLA types from SNP genotypes, the first step is to infer SNP haplotypes from genotypes. However, for the same SNP genotype data set, the haplotype configurations inferred by different methods are usually inconsistent, and it is often difficult to decide which one is true. Results In this paper, we design an accurate HLA gene type inference algorithm by utilizing SNP genotype data from pedigrees, known HLA gene types of some individuals and the relationship between inferred SNP haplotypes and HLA gene types. Given a set of haplotypes inferred from the genotypes of a population consisting of many pedigrees, the algorithm first constructs a weighted similarity graph based on a new haplotype similarity measure and derives constraint edges from known HLA gene types. Based on the principle that different HLA gene alleles should have different background haplotypes, the algorithm searches for an optimal labeling of all the haplotypes with unknown HLA gene types such that the total weight among the same HLA gene types is maximized. To deal with ambiguous haplotype solutions, we use a genetic algorithm to select haplotype configurations that tend to maximize the same optimization criterion. Our experiments on a previously typed subset of the HapMap data show that the algorithm is highly accurate, achieving an accuracy of 96% for gene HLA-A, 95% for HLA-B, 97% for HLA-C, 84% for HLA-DRB1, 98% for HLA-DQA1 and 97% for HLA-DQB1 in a leave-one-out test. Conclusions Our algorithm can infer HLA gene types from neighboring SNP genotype data accurately. Compared with a recent approach on the same input data, our algorithm achieved a higher accuracy. The code of our algorithm is available to the public for free upon request to the corresponding authors
Risk of myocarditis following sequential doses of COVID-19 vaccine and SARS-CoV-2 infection by age and sex
Myocarditis is more common after severe acute respiratory syndrome coronavirus 2 infection than after COVID-19 vaccination, but the risks in younger people and after sequential vaccine doses are less certain. METHODS: A self-controlled case series study of people ages 13 years or older vaccinated for COVID-19 in England between December 1, 2020, and December 15, 2021, evaluated the association between vaccination and myocarditis, stratified by age and sex. The incidence rate ratio and excess number of hospital admissions or deaths from myocarditis per million people were estimated for the 1 to 28 days after sequential doses of adenovirus (ChAdOx1) or mRNA-based (BNT162b2, mRNA-1273) vaccines, or after a positive SARS-CoV-2 test. RESULTS: In 42 842 345 people receiving at least 1 dose of vaccine, 21 242 629 received 3 doses, and 5 934 153 had SARS-CoV-2 infection before or after vaccination. Myocarditis occurred in 2861 (0.007%) people, with 617 events 1 to 28 days after vaccination. Risk of myocarditis was increased in the 1 to 28 days after a first dose of ChAdOx1 (incidence rate ratio, 1.33 [95% CI, 1.09–1.62]) and a first, second, and booster dose of BNT162b2 (1.52 [95% CI, 1.24–1.85]; 1.57 [95% CI, 1.28–1.92], and 1.72 [95% CI, 1.33–2.22], respectively) but was lower than the risks after a positive SARS-CoV-2 test before or after vaccination (11.14 [95% CI, 8.64–14.36] and 5.97 [95% CI, 4.54–7.87], respectively). The risk of myocarditis was higher 1 to 28 days after a second dose of mRNA-1273 (11.76 [95% CI, 7.25–19.08]) and persisted after a booster dose (2.64 [95% CI, 1.25–5.58]). Associations were stronger in men younger than 40 years for all vaccines. In men younger than 40 years old, the number of excess myocarditis events per million people was higher after a second dose of mRNA-1273 than after a positive SARS-CoV-2 test (97 [95% CI, 91–99] versus 16 [95% CI, 12–18]). In women younger than 40 years, the number of excess events per million was similar after a second dose of mRNA-1273 and a positive test (7 [95% CI, 1–9] versus 8 [95% CI, 6–8]). CONCLUSIONS: Overall, the risk of myocarditis is greater after SARS-CoV-2 infection than after COVID-19 vaccination and remains modest after sequential doses including a booster dose of BNT162b2 mRNA vaccine. However, the risk of myocarditis after vaccination is higher in younger men, particularly after a second dose of the mRNA-1273 vaccine
Safety outcomes following COVID-19 vaccination and infection in 5.1 million children in England
The risk-benefit profile of COVID-19 vaccination in children remains uncertain. A self-controlled case-series study was conducted using linked data of 5.1 million children in England to compare risks of hospitalisation from vaccine safety outcomes after COVID-19 vaccination and infection. In 5-11-year-olds, we found no increased risks of adverse events 1–42 days following vaccination with BNT162b2, mRNA-1273 or ChAdOX1. In 12-17-year-olds, we estimated 3 (95%CI 0–5) and 5 (95%CI 3–6) additional cases of myocarditis per million following a first and second dose with BNT162b2, respectively. An additional 12 (95%CI 0–23) hospitalisations with epilepsy and 4 (95%CI 0–6) with demyelinating disease (in females only, mainly optic neuritis) were estimated per million following a second dose with BNT162b2. SARS-CoV-2 infection was associated with increased risks of hospitalisation from seven outcomes including multisystem inflammatory syndrome and myocarditis, but these risks were largely absent in those vaccinated prior to infection. We report a favourable safety profile of COVID-19 vaccination in under-18s
Author Correction: Safety outcomes following COVID-19 vaccination and infection in 5.1 million children in England
Correction to: Nature Communicationshttps://doi.org/10.1038/s41467-024-47745-z, published online 27 May 2024 The original version of this article contained information on vaccine dose amount (full or half) in Table 2 and Supplementary Table 1. This has subsequently been found to be inaccurate due to inconsistent coding in the raw data. The vaccine dose amount has therefore been removed from Table 2 and Supplementary Table 1. This data was not used elsewhere in the analysis. An additional line has been added to the introduction to summarise vaccine doses that were given to the population: “Those aged 12 years and above were given a full dose of BNT162b2 vaccine (30 micrograms), and children aged 5–11 years were given a dose of 10 micrograms of BNT162b2 vaccine.” These changes have been made in the PDF and HTML versions of the article
Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection
Although myocarditis and pericarditis were not observed as adverse events in coronavirus disease 2019 (COVID-19) vaccine trials, there have been numerous reports of suspected cases following vaccination in the general population. We undertook a self-controlled case series study of people aged 16 or older vaccinated for COVID-19 in England between 1 December 2020 and 24 August 2021 to investigate hospital admission or death from myocarditis, pericarditis and cardiac arrhythmias in the 1–28 days following adenovirus (ChAdOx1, n = 20,615,911) or messenger RNA-based (BNT162b2, n = 16,993,389; mRNA-1273, n = 1,006,191) vaccines or a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive test (n = 3,028,867). We found increased risks of myocarditis associated with the first dose of ChAdOx1 and BNT162b2 vaccines and the first and second doses of the mRNA-1273 vaccine over the 1–28 days postvaccination period, and after a SARS-CoV-2 positive test. We estimated an extra two (95% confidence interval (CI) 0, 3), one (95% CI 0, 2) and six (95% CI 2, 8) myocarditis events per 1 million people vaccinated with ChAdOx1, BNT162b2 and mRNA-1273, respectively, in the 28 days following a first dose and an extra ten (95% CI 7, 11) myocarditis events per 1 million vaccinated in the 28 days after a second dose of mRNA-1273. This compares with an extra 40 (95% CI 38, 41) myocarditis events per 1 million patients in the 28 days following a SARS-CoV-2 positive test. We also observed increased risks of pericarditis and cardiac arrhythmias following a positive SARS-CoV-2 test. Similar associations were not observed with any of the COVID-19 vaccines, apart from an increased risk of arrhythmia following a second dose of mRNA-1273. Subgroup analyses by age showed the increased risk of myocarditis associated with the two mRNA vaccines was present only in those younger than 40
Methylation of class II transactivator gene promoter IV is not associated with susceptibility to Multiple Sclerosis
<p>Abstract</p> <p>Background</p> <p>Multiple sclerosis (MS) is a complex trait in which alleles at or near the class II loci <it>HLA-DRB1 </it>and <it>HLA-DQB1 </it>contribute significantly to genetic risk. The MHC class II transactivator (<it>MHC2TA</it>) is the master controller of expression of class II genes, and methylation of the promoter of this gene has been previously been shown to alter its function. In this study we sought to assess whether or not methylation of the <it>MHC2TA </it>promoter pIV could contribute to MS disease aetiology.</p> <p>Methods</p> <p>In DNA from peripheral blood mononuclear cells from a sample of 50 monozygotic disease discordant MS twins the <it>MHC2TA </it>promoter IV was sequenced and analysed by methylation specific PCR.</p> <p>Results</p> <p>No methylation or sequence variation of the <it>MHC2TA </it>promoter pIV was found.</p> <p>Conclusion</p> <p>The results of this study cannot support the notion that methylation of the pIV promoter of <it>MHC2TA </it>contributes to MS disease risk, although tissue and timing specific epigenetic modifications cannot be ruled out.</p
Associations of HLA-DP Variants with Hepatitis B Virus Infection in Southern and Northern Han Chinese Populations: A Multicenter Case-Control Study
) locus has been reported to be associated with hepatitis B virus (HBV) infection in populations of Japan and Thailand. We aimed to examine whether the association can be replicated in Han Chinese populations. = 0.097∼0.697 and 0.198∼0.615 in northern Chinese population, respectively). loci were strongly associated with HBV infection in southern and northern Han Chinese populations, but not with HBV progression
- …