19 research outputs found
Moxifloxacin enhances antiproliferative and apoptotic effects of etoposide but inhibits its proinflammatory effects in THP-1 and Jurkat cells
Etoposide (VP-16) is a topoisomerase II (topo II) inhibitor chemotherapeutic agent. Studies indicate that VP-16 enhances proinflammatory cytokines secretion from tumour cells, including IL-8, a chemokine associated with proangiogenic effects. Fluoroquinolones inhibit topo II activity in eukaryotic cells by a mechanism different from that of VP-16. The fluoroquinolone moxifloxacin (MXF) has pronounced anti-inflammatory effects in vitro and in vivo. We studied the effects of MXF and VP-16 on purified human topo II activity and further analysed their combined activity on proliferation, apoptosis and caspase-3 activity in THP-1 and Jurkat cells. Moxifloxacin alone slightly inhibited the activity of human topo II; however, in combination with VP-16 it led to a 73% reduction in enzyme activity. VP-16 inhibited cell proliferation in a time and dose-dependent manner. The addition of moxifloxacin for 72 h to low-dose VP-16 doubled its cytotoxic effect in THP-1 and Jurkat cells (1.8- and 2.6-fold decrease in cell proliferation, respectively) (P<0.004). Moxifloxacin given alone did not induce apoptosis but enhanced VP-16-induced apoptosis in THP-1 and Jurkat cells (1.8- and two-fold increase in annexin V positive cells and caspase-3 activity, respectively) (P<0.04). VP-16 induced the release of IL-8 in a time and dose-dependent manner from THP-1 cells. Moxifloxacin completely blocked the enhanced release of IL-8 induced by 0.5 and 1 μg ml−1 VP-16, and decreased IL-8 release from cells incubated for 72 h with 3 μg ml−1 VP-16 (P<0.001). VP-16 enhanced the release of IL-1β and TNF-α from THP-1 cells, whereas the addition of MXF prevented the enhanced cytokine secretion (P<0.001). We conclude that MXF significantly enhances VP-16 cytotoxicity in tumour-derived cells while preventing VP-16-induced proinflammatory cytokine release. This unique combination may have clinical benefits and cytotoxic drug ‘sparing effect' and should be further studied in vivo
Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes
Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase
PIAS1 is a determinant of poor survival and acts as a positive feedback regulator of AR signaling through enhanced AR stabilization in prostate cancer
Novel drugs like Abiraterone or Enzalutamide, which target androgen receptor (AR) signaling to improve androgen deprivation therapy (ADT), have been developed during the past years. However, the application of these drugs is limited because of occurrence of inherent or acquired therapy resistances during the treatment. Thus, identification of new molecular targets is urgently required to improve current therapeutic prostate cancer (PCa) treatment strategies. PIAS1 (protein inhibitor of activated STAT1 (signal transducer and activator of transcription-1)) is known to be an important cell cycle regulator and PIAS1-mediated SUMOylation is essential for DNA repair. In this context, elevated PIAS1 expression has already been associated with cancer initiation. Thus, in the present study, we addressed the question of whether PIAS1 targeting can be used as a basis for an improved PCa therapy in combination with anti-androgens. We show that PIAS1 significantly correlates with AR expression in PCa tissue and in cell lines and demonstrate that high PIAS1 levels predict shorter relapse-free survival. Our patient data are complemented by mechanistic and functional in vitro experiments that identify PIAS1 as an androgen-responsive gene and a crucial factor for AR signaling via prevention of AR degradation. Furthermore, PIAS1 knockdown is sufficient to decrease cell proliferation as well as cell viability. Strikingly, Abiraterone or Enzalutamide treatment in combination with PIAS1 depletion is even more effective than singledrug treatment in multiple PCa cell models, rendering PIAS1 as a promising target protein for a combined treatment approach to improve future PCa therapies
Evolution of hydrogen dynamics in amorphous ice with density
The single-particle dynamics of hydrogen atoms in several of the amorphous ices are reported using a combination of deep inelastic neutron scattering (DINS) and inelastic neutron scattering (INS). The mean kinetic energies of the hydrogen nuclei are found to increase with increasing density, indicating the weakening of hydrogen bonds as well as a trend toward steeper and more harmonic hydrogen vibrational potential energy surfaces. DINS shows much more pronounced changes in the O–H stretching component of the mean kinetic energy going from low- to high-density amorphous ices than indicated by INS and Raman spectroscopy. This highlights the power of the DINS technique to retrieve accurate ground-state kinetic energies beyond the harmonic approximation. In a novel approach, we use information from DINS and INS to determine the anharmonicity constants of the O–H stretching modes. Furthermore, our experimental kinetic energies will serve as important benchmark values for path-integral Monte Carlo simulations