57 research outputs found

    Froude supercritical flow processes and sedimentary structures: new insights from experiments with a wide range of grain sizes

    Get PDF
    Recognition of Froude supercritical flow deposits in environments that range from rivers to the ocean floor has triggered a surge of interest in their flow processes, bedforms and sedimentary structures. Interpreting these supercritical flow deposits is especially important because they often represent the most powerful flows in the geological record. Insights from experiments are key to reconstruct palaeo‐flow processes from the sedimentary record. So far, all experimentally produced supercritical flow deposits are of a narrow grain‐size range (fine to medium sand), while deposits in the rock record often consist of a much wider grain‐size distribution. This paper presents results of supercritical‐flow experiments with a grain‐size distribution from clay to gravel. These experiments show that cyclic step instabilities can produce more complex and a larger variety of sedimentary structures than the previously suggested backsets and ‘scour and fill’ structures. The sedimentary structures are composed of irregular lenses, mounds and wedges with backsets and foresets, as well as undulating planar to low‐angle upstream and downstream dipping laminae. The experiments also demonstrate that the Froude number is not the only control on the sedimentary structures formed by supercritical‐flow processes. Additional controls include the size and migration rate of the hydraulic jump and the substrate cohesion. This study further demonstrates that Froude supercritical flow promotes suspension transport of all grain sizes, including gravels. Surprisingly, it was observed that all grain sizes were rapidly deposited just downstream of hydraulic jumps, including silt and clay. These results expand the range of dynamic mud deposition into supercritical‐flow conditions, where local transient shear stress reduction rather than overall flow waning conditions allow for deposition of fines. Comparison of the experimental deposits with outcrop datasets composed of conglomerates to mudstones, shows significant similarities and highlights the role of hydraulic jumps, rather than overall flow condition changes, in producing lithologically and geometrically complex stratigraphy

    Lacustrine stromatolites: Useful structures for environmental interpretation – an example from the Miocene Ebro Basin

    Get PDF
    The significance of stromatolites as depositional environmental indicators and the underlying causes of lamination in the lacustrine realm are poorly understood. Stromatolites in a ca 600 m thick Miocene succession in the Ebro Basin are good candidates to shed light on these issues because they are intimately related to other lacustrine carbonate and sulphate facies, grew under variable environmental conditions and show distinct lamination patterns. These stromatolites are associated with wave-related, clastic-carbonate laminated limestones. Both facies consist of calcite and variable amounts of dolomite. Thin planar stromatolites (up to 10 cm thick and less than 6 m long) occurred in very shallow water. These stromatolites represented first biological colonization after: (i) subaerial exposure in the palustrine environment (i.e. at the beginning of deepening cycles); or (ii) erosion due to surge action, then coating very irregular surfaces on laminated limestones (i.e. through shallowing or deepening cycles). Sometimes they are associated with evaporative pumping. Stratiform stromatolites (10 to 30 cm high and tens of metres long) and domed stromatolites (10 to 30 cm high and long) developed in deeper settings, between the surge periods that produced hummocky cross-stratification and horizontal lamination offshore. Changes in stromatolite lamina shape, and thus in the growth forms through time, can be attributed to changes in water depth, whereas variations in lamina continuity are linked to water energy and sediment supply. Growth of the stromatolites resulted from in situ calcite precipitation and capture of minor amounts of fine-grained carbonate particles. Based on texture, four types of simple laminae are distinguished. The simple micrite and microsparite laminae can be grouped into light and dark composite laminae, which represent, respectively, high and low Precipitation/Evaporation ratio periods. Different lamination patterns provide new ideas for the interpretation of microbial laminations as a function of variations in climate-dependent parameters (primarily the Precipitation/Evaporation ratio) over variable timescales

    Bedforms and sedimentary structures related to supercritical flows in glacigenic settings

    Get PDF
    Upper-flow-regime bedforms, including upper-stage-plane beds, antidunes, chutes-and-pools and cyclic steps, are ubiquitous in glacigenic depositional environments characterized by abundant meltwater discharge and sediment supply. In this study, the depositional record of Froude near-critical and supercritical flows in glacigenic settings is reviewed, and similarities and differences between different depositional environments are discussed. Upper-flow-regime bedforms may occur in subglacial, subaerial and subaqueous environments, recording deposition by free-surface flows and submerged density flows. Although individual bedform types are generally not indicative of any specific depositional environment, some observed trends are similar to those documented in non-glacigenic settings. Important parameters for bedform evolution that differ between depositional environments include flow confinement, bed slope, aggradation rate and grain size. Cyclic-step deposits are more common in confined settings, like channels or incised valleys, or steep slopes of coarse-grained deltas. Antidune deposits prevail in unconfined settings and on more gentle slopes, like glacifluvial fans, sand-rich delta slopes or subaqueous (ice-contact) fans. At low aggradation rates, only the basal portions of bedforms are preserved, such as scour fills related to the hydraulic-jump zone of cyclic steps or antidune-wave breaking, which are common in glacifluvial systems and during glacial lake-outburst floods and (related) lake-level falls. Higher aggradation rates result in increased preservation potential, possibly leading to the preservation of complete bedforms. Such conditions are met in sediment-laden jökulhlaups and subaqueous proglacial environments characterized by expanding density flows. Coarser-grained sediment leads to steeper bedform profiles and highly scoured facies architectures, while finer-grained deposits display less steep bedform architectures. Such differences are in part related to stronger flows, faster settling of coarse clasts, and more rapid breaking of antidune waves or hydraulic-jump formation over hydraulically rough beds. © 2020 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologist

    Reconstruction of bedform dynamics controlled by supercritical flow in the channel–lobe transition zone of a deep‐water delta (Sant Llorenç del Munt, north‐east Spain, Eocene)

    No full text
    Stable supercritical-flow bedform phases under two-dimensional steady flow are geometrically simple and include long-wavelength cyclic steps at high Froude numbers and antidunes characterized by in-phase flow that is near critical. Less well understood are the transitional bedform phases at the boundaries of the stable bedform fields and bedforms developing in complex flow geometries like the channel–lobe transition zone. This complexity is exacerbated by the fact that natural flows are never steady. Stable antidune bedforms may be reworked by temporally increasing discharge into chute and pool, and cyclic step and chute and pool fields will be reworked into antidunes if discharge is sufficiently decreasing. In addition, the channel–lobe transition zone is continuously evolving in space and time due to the influence of solitary hydraulic jumps at the channel mouth on channel extension and back stepping. This detailed outcrop study of a deep-water delta slope belonging to the Eocene Sant Llorenç del Munt clastic wedge exposed near El Pont de Vilomara (north-east Spain), tackles the complex bedform architecture problems by applying a method previously developed for fluvial deposits. Analysis of surfaces traced on high-definition, drone-derived in-strike images combines architectural studies with facies analysis. Set boundaries of the bedforms were thus established, revealing the upslope migration of hydraulic jump zones and the intricate stacking of antidunes and solitary, mouthbar related chute and pool like structures. Further analysis of the stacking of bedforms and bounding surfaces provide evidence that deposition occurred in a relatively short (few hundreds of metres) channel–lobe transition zone at the base of the delta slope. The usefulness of the bounding surface hierarchy approach for turbidite deposits lies in the careful evaluation of the spatial extent of bounding surfaces, which are easily overlooked in complex architectures such as those created in the channel–lobe transition zone
    • 

    corecore