6,372 research outputs found

    Mars Observer Radar Altimeter Radiometer (MORAR)

    Get PDF
    The Mars Observer Project will permit the advancement of the state of the topographic and hypsometric knowledge of Mars to a level of 10 m or better over the surface of the planet Mars, the measurement of microwave surface brightness temperature of Mars with an accuracy of 15 to 20 K over 24 hours, and the measurement, globally, of surface returned power related to radar cross section with an accuracy of 1 dB and a repeatability of .5 dB. The MORAR Hardware Development, Ground Data Processing, and the Mission Operations will allow the accomplishment of these scientific objectives to define globally the topography of Mars at sufficient vertical resolution and spatial scale to address both large-scale geophysical and small-scale geologic problems, and to obtain global surface electrical and scattering properties of the upper several centimeters of the Martian surface for assessment of the composition, physical state, and volatile distribution of the surface

    Topography Experiment (TOPEX) Software Document Series Volume 7: TOPEX Mission Radar Altimeter Engineering Assessment Report, February 1994

    Get PDF
    This document describes the GSFC/WFF analysis of the on-orbit engineering data from the TOPEX radar altimeter, to establish altimeter performance. In accordance with Project guidelines, neither surface truth nor precision orbital data are used for the engineering assessment of the altimeter. The use of such data would imply not only a more intensive and complete performance evaluation, but also a calibration. Such evaluations and.calibrations are outside the scope of this document and will be presented in a separate Verification Report

    Screening and Breeding for Bermudagrass Stem Maggot (BSM) Resistance Using U.S. Bermudagrass Germplasm

    Get PDF
    Bermudagrass (Cynodon sp.) is an important perennial forage grass grown in many parts of the world. Bermudagrass Stem Maggot (BSM) (Atherigona reversura Villeneuve) is an insect pest that reduces forage yield and nutritive value if it is not controlled. The pest, native to SE Asia, was first documented in North America in 2009 and is now considered invasive. A collection of over 300 forage bermudagrass accessions was evaluated in the field for susceptibility to BSM in 2014 and 2015. Tolerant lines and susceptible checks were then evaluated for yield loss due to BSM in a replicated field study by comparing insecticide-sprayed plots to unsprayed plots in Tifton, GA starting in 2016 continuing through the summer of 2019. For mid to late summer harvests during 2017, BSM reduced yield of Alicia and Russell by over 40% and Tifton 85 by up to 35%. However, tolerant accessions exhibited less than 10% yield loss and had dry matter yields comparable to Tifton 85. Nutritive value will also be assessed. These accessions will be further evaluated and used in plant breeding

    Ocean topography experiment (TOPEX) radar altimeter

    Get PDF
    A spaceflight qualified Radar Altimeter capable of achieving the TOPEX Mission measurement precision requirement of 2-centimeters, is provided and its performance (Engineering Assessment) will be evaluated after launch and continuously during its 3-year mission operational period. Information will be provided to JPL about the calibration of the TOPEX Radar Altimeter. The specifications for the required data processing algorithms which will be necessary to convert the Radar Altimeter mission telemetry data into the geophysical data will also be provided. The stringent 2 cm precision requirement for ocean topography determination from space necessitated examining existing Radar Altimeter designs for their applicability towards TOPEX. As a result, a system configuration evolved using some flight proven designs in conjunction with needed improvements which include: (1) a second frequency or channel to remove the range delay or apparent height bias caused by the electron content of the ionosphere; (2) higher transmit pulse repetition frequencies for correlation benefits at higher sea states to maintain precision; and (3) a faster microprocessor to accommodate two channels of altimetry data. Additionally, examination of past altimeter programs associated data processing algorithms was accomplished to establish the TOPEX-class Radar Altimeter data processing algorithms, and the necessary direction was outlined to begin to generate these for the TOPEX Mission

    TOPEX Radar Altimeter Engineering Assessment Report Final Update-Side B Turn-On to End-of-Mission on October 9, 2005

    Get PDF
    This is the thirteenth and final report in a series of TOPEX Radar Altimeter Engineering Assessment Reports. The initial TOPEX Radar Altimeter Engineering Assessment Report, in February 1994, presented performance results for the NASA Radar Altimeter on the TOPEX/POSEIDON spacecraft, from its launch in August 1992 to February 1994. Since the time of that initial report and prior to this report, there have been eleven interim supplemental Engineering Assessment Reports, issued in March 1995, May 1996, March 1997, June 1998, August 1999, September 2000, June 2001, March 2002, May 2003, April 2004 and September 2005. The sixth supplement in September 2000 was the first assessment report that addressed Side B performance, and presented the altimeter performance from Side B turn-on until the end of calendar year 1999. This report extends the performance assessment of Side B to the final collection of data on October 9, 2005, and includes the performance assessment of Jason-1, the TOPEX follow-on mission, launched on December 7, 2001. This report provides some comparisons of Side A and Side B performance

    GEOSAT Follow-On (GFO) Altimeter Document Series, Volume 9. GFO and JASON Altimeter Engineering Assessment Report Update: GFO-Acceptance to December 18, 2006, JASON-Acceptance to December 24, 2006. Version 1: June 2007

    Get PDF
    The initial GFO Altimeter Engineering Assessment Report, March 2001 (NASA/TM-2001-209984/Ver.1/Vol.1) covered the GFO performance from Launch to Acceptance (10 February 1998 to 29 November 2000). The second of the series covered the performance from Acceptance to the end of Cycle 20 (29 November 2000 to 21 November 2001). The third of the series covered the performance from Acceptance to the end of Cycle 42 (29 November 2000 to 30 November 2002). The fourth of the series covered the performance from Acceptance to the end of Cycle 64 (29 November 2000 to 17 December 2003). The fifth of the series covered performance from Acceptance to the end of Cycle 86 (29 November 2000 to 17 December 2004). The sixth of the series covered performance from Acceptance to the end of Cycle 109 (29 November 2000 to 26 December 2005). In this year's GFO report, we have begun the inclusion of analyses of the JASON altimeter. In past years, JASON and TOPEX were compared during our assessment of the TOPEX altimeter; however, with the end of the TOPEX mission, we have developed methods to report on JASON as it relates to GFO. We see no change trend between the three altimeters and conclude all three are stable based on our cross comparison analyses

    GEOSAT Follow-On (GFO) Altimeter Document Series, Volume 8: GFO Altimeter Engineering Assessment Report Update:The First 109 Cycles Since Acceptance November 29, 2000 to December 26, 2005

    Get PDF
    The purpose of this document is to present and document GFO performance analyses and results. This is the fifth Assessment Report since the initial report. This report extends the performance assessment since acceptance to 26 December 2005. The initial GFO Altimeter Engineering Assessment Report, March 2001 (NASA/TM-2001-209984/Ver.1/Vol.1) covered the GFO performance from Launch to Acceptance (10 February 1998 to 29 November 2000). The second of the series covered the performance from Acceptance to the end of Cycle 20 (29 November 2000 to 21 November 2001). The third of the series covered the performance from Acceptance to the end of Cycle 42 (29 November 2000 to 30 November 2002). The fourth of the series covered the performance from Acceptance to the end of Cycle 64 (29 November 2000 to 17 December 2003). The fifth of the series covered performance from Acceptance to the end of Cycle 86 (29 November 2000 to 17 December 2004). Since launch, we have performed a variety of GFO performance studies; an accumulative index of those studies is provided in Appendix A

    Moving Warm-Season Forage Bermudagrass (\u3ci\u3eCynodon\u3c/i\u3e sp.) into Temperate Regions of North America

    Get PDF
    Warm-season (C4) perennial grasses are grown over millions of hectares in the Southeastern United States. These grasses produce optimal growth at 30 to 38°C diurnal temperature. Bermudagrass (Cynodon sp.) has been adopted as the preferred forage for many livestock and hay producers. Compared to other native and introduced warm-season perennial grass species, improved bermudagrass varieties produce high biomass with enhanced digestibility for ruminant grazing or feed. Until the 1930’s pastures in the region consisted of unimproved ‘common’ bermudagrass (Cynodon dactylon (L.) Pers.) that had been introduced earlier. However, in the early 20th century, new germplasm, including stargrass (C nlemfuënsis Vanderyst) was collected, primarily from Africa. This germplasm provided a source for major improvements in yield and digestibility. Unfortunately, stargrass is not cold tolerant, limiting it to regions between 30°N and 30°S. Intercrossing of C. nlemfuënsis with C. dactylon has produced highly successful cultivars, such as Tifton 85, which can survive at northern latitudes of at least 35°. However, there has been a desire to extend adaptation further north into the warm-season/cool-season grass transition zone. This would require a combination of breeding to improve cold tolerance in clonally-propagated varieties and development of seeded varieties that could be re-seeded following extremely cold winters. Earlier work at Oklahoma State University indicated that some cultivars had significantly different tolerance to freeze. Screening the Tifton, GA, USA core collection of 175 accessions in a northern, high-altitude location, has identified germplasm with promising cold tolerance. A breeding line (Tifton 79-16) had significantly higher yields at the northern Georgia location than the cold tolerant cultivar (Tifton 44). A number of plant introductions had higher yields as well
    corecore