616 research outputs found

    Targeted Insertion of the mPing Transposable Element

    Get PDF
    Class II DNA Transposable Elements (TEs) are moved from one location to another in the genome by the action of transposase proteins that bind to repeat sequences at the ends of the elements. Although the location TE insertion is mostly random, the addition of DNA binding domains to the transposase proteins has allowed for targeted insertion of some elements. In this study, the Gal4 binding domain was added to the transposase proteins, ORF1 and TPase, which mobilize the mPing element from rice. The Gal4:TPase construct was capable of increasing the number of mPing insertions into the Gal2 and Gal4 promoter sequences in yeast. While this confirms that mPing insertion preference can be manipulated, the target specificity is relatively low. Thus, the CRISPR/Cas9 system was tested for its ability to generate targeted insertion of mPing. A dCas9:TPase fusion protein had a low transposition rate suggesting that the addition of this large protein disrupts TPase function. Unfortunately, the use of a MS2 binding domain to localize the TPase to the MS2 hairpin containing gRNA failed to produce targeted insertion. Thus, our results suggest that the addition of small DNA binding domain to the N-terminal of TPase is the best strategy for targeted insertion of mPing

    DESIGNING NEW BIOMATERIALS: Modifying a Spider Silk Gene For Efficient Bacterial Expression for Industrial Production

    Get PDF
    Spider silks have remarkable physical properties due to a combination of strength and elasticity. In addition, spider silks are biocompatible and biodegradable. Our laboratory has shown that the strength of products, such as fibers, produced with other silk proteins correlates with the size of the silk protein. The aciniform silk protein (AcSp1), has been shown to produce the thinnest and strongest fibers of all the natural spider silks. Aciniform silk is composed of a nonrepetitive amino-terminal region, 14 repeats of approximately 200 amino acids each, and a nonrepetitive carboxy-terminal region. We have been able to produce different variants of this gene. All AcSp1 protein variants were able to express in E. coli. The bacteria expression of the AcSp1 protein is low and the protein is expressed not only as a full length polypeptide but also as fragments of the protein. We identified a sequence in the amino-terminal region of the first repeat of the AcSp1 gene that acts as an early termination sequence. Our objective is to modify this region on the gene to study changes in the expression efficiency of AcSp1

    Precise Repair of mPing Excision Sites is Facilitated by Target Site Duplication Derived Microhomology

    Get PDF
    A key difference between the Tourist and Stowaway families of miniature inverted repeat transposable elements (MITEs) is the manner in which their excision alters the genome. Upon excision, Stowaway-like MITEs and the associated Mariner elements usually leave behind a small duplication and short sequences from the end of the element. These small insertions or deletions known as “footprints” can potentially disrupt coding or regulatory sequences. In contrast, Tourist-like MITEs and the associated PIF/Pong/Harbinger elements generally excise precisely, returning the genome to its original state. The purpose of this study was to determine the mechanisms underlying these excision differences, including the role of the host DNA repair mechanisms

    The Rice Miniature Inverted Repeat Transposable Element mPing Is an Effective Insertional Mutagen in Soybean

    Get PDF
    Insertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of generations. However, existing transposon-tagging tools being used in legumes are of limited utility because of restricted transposition (Ac/Ds: soybean) or the requirement for tissue culture activation (Tnt1: Medicago truncatula). A recently discovered transposable element from rice (Oryza sativa), mPing, and the genes required for its mobilization, were transferred to soybean to determine if it will be an improvement over the other available transposon-tagging tools. Stable transformation events in soybean were tested for mPing transposition. Analysis of mPing excision at early and late embryo developmental stages revealed increased excision during late development in most transgenic lines, suggesting that transposition is developmentally regulated. Transgenic lines that produced heritable mPing insertions were identified, with the plants from the highest activity line producing at least one new insertion per generation. Analysis of the mPing insertion sites in the soybean genome revealed that features displayed in rice were retained including transposition to unlinked sites and a preference for insertion within 2.5 kb of a gene. Taken together these findings indicate that mPing has the characteristics necessary for an effective transposon-tagging resource

    Tnt1 Retrotransposon Mutagenesis: A Tool for Soybean Functional Genomics

    Get PDF
    Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean

    Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway

    Get PDF
    Optogenetics provides a means to dissect the organization and function of neural circuits. Optogenetics also offers the translational promise of restoring sensation, enabling movement or supplanting abnormal activity patterns in pathological brain circuits. However, the inherent sluggishness of evoked photocurrents in conventional channelrhodopsins has hampered the development of optoprostheses that adequately mimic the rate and timing of natural spike patterning. Here, we explore the feasibility and limitations of a central auditory optoprosthesis by photoactivating mouse auditory midbrain neurons that either express channelrhodopsin-2 (ChR2) or Chronos, a channelrhodopsin with ultra-fast channel kinetics. Chronos-mediated spike fidelity surpassed ChR2 and natural acoustic stimulation to support a superior code for the detection and discrimination of rapid pulse trains. Interestingly, this midbrain coding advantage did not translate to a perceptual advantage, as behavioral detection of midbrain activation was equivalent with both opsins. Auditory cortex recordings revealed that the precisely synchronized midbrain responses had been converted to a simplified rate code that was indistinguishable between opsins and less robust overall than acoustic stimulation. These findings demonstrate the temporal coding benefits that can be realized with next-generation channelrhodopsins, but also highlight the challenge of inducing variegated patterns of forebrain spiking activity that support adaptive perception and behavior
    • …
    corecore