22 research outputs found
Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center
[EN] Total profit is one of the most important factors to be considered from the perspective of resource providers. In this paper, an original MapReduce workflow scheduling with deadline and data locality is proposed to maximize total profit of resource providers. A new workflow conversion based on dynamic programming and ChainMap/ChainReduce is designed to decrease transmission times among MapReduce jobs of workflows. A new deadline division considering execution time, float time and job level is proposed to obtain better deadlines of MapReduce jobs in workflows. With the adapted replica strategy in MapReduce workflow, a new task scheduling is proposed to improve data locality which assigns tasks to servers with the earliest completion time in order to ensure resource providers obtain more profit. Experimental results show that the proposed heuristic results in larger total profit than other adopted algorithms.This work is supported by the National Key Research and Development Program of China (No. 2017YFB1400801), the National Natural Science Foundation of China (Nos. 61872077, 61832004) and Collaborative Innovation Center of Wireless Communications Technology. Rubén Ruiz is partly supported by the Spanish Ministry of Science, Innovation, and Universities, under
the project ¿OPTEP-Port Terminal Operations Optimization¿ (No. RTI2018-094940-B-I00) financed with FEDER funds¿.Wang, J.; Li, X.; Ruiz GarcÃa, R.; Xu, H.; Chu, D. (2020). Allocating MapReduce workflows with deadlines to heterogeneous servers in a cloud data center. Service Oriented Computing and Applications. 14(2):101-118. https://doi.org/10.1007/s11761-020-00290-1S101118142Zaharia M, Chowdhury M, Franklin M et al (2010) Spark: cluster computing with working sets. In: Usenix conference on hot topics in cloud computing, pp 1765–1773Li L, Ma Z, Liu L et al (2013) Hadoop-based ARIMA algorithm and its application in weather forecast. Int J Database Theory Appl 6(5):119–132Xun Y, Zhang J, Qin X (2017) FiDoop: parallel mining of frequent itemsets using MapReduce. IEEE Trans Syst Man Cybern Syst 46(3):313–325Wang Y, Shi W (2014) Budget-driven scheduling algorithms for batches of MapReduce jobs in heterogeneous clouds. IEEE Trans Cloud Comput 2(3):306–319Tiwari N, Sarkar S, Bellur U et al (2015) Classification framework of MapReduce scheduling algorithms. ACM Comput Surv 47(3):1–49Bu Y, Howe B, Balazinska M et al (2012) The HaLoop approach to large-scale iterative data analysis. VLDB J 21(2):169–190Gunarathne T, Zhang B, Wu T et al (2013) Scalable parallel computing on clouds using Twister4Azure iterative MapReduce. Future Gener Comput Syst 29(4):1035–1048Zhang Y, Gao Q, Gao L et al (2012) iMapReduce: a distributed computing framework for iterative computation. J Grid Comput 10(1):47–68Dong X, Wang Y, Liao H (2011) Scheduling mixed real-time and non-real-time applications in MapReduce environment. In: International conference on parallel and distributed systems, pp 9–16Tang Z, Zhou J, Li K et al (2013) A MapReduce task scheduling algorithm for deadline constraints. Clust Comput 16(4):651–662Zhang W, Rajasekaran S, Wood T et al (2014) MIMP: deadline and interference aware scheduling of Hadoop virtual machines. In: International symposium on cluster, cloud and grid computing, pp 394–403Teng F, Magoulès F, Yu L et al (2014) A novel real-time scheduling algorithm and performance analysis of a MapReduce-based cloud. J Supercomput 69(2):739–765Palanisamy B, Singh A, Liu L (2015) Cost-effective resource provisioning for MapReduce in a cloud. IEEE Trans Parallel Distrib Syst 26(5):1265–1279Hashem I, Anuar N, Marjani M et al (2018) Multi-objective scheduling of MapReduce jobs in big data processing. Multimed Tools Appl 77(8):9979–9994Xu X, Tang M, Tian Y (2017) QoS-guaranteed resource provisioning for cloud-based MapReduce in dynamical environments. Future Gener Comput Syst 78(1):18–30Li H, Wei X, Fu Q et al (2014) MapReduce delay scheduling with deadline constraint. Concurr Comput Pract Exp 26(3):766–778Polo J, Becerra Y, Carrera D et al (2013) Deadline-based MapReduce workload management. IEEE Trans Netw Serv Manag 10(2):231–244Chen C, Lin J, Kuo S (2018) MapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systems. IEEE Trans Cloud Comput 6(1):127–140Kao Y, Chen Y (2016) Data-locality-aware MapReduce real-time scheduling framework. J Syst Softw 112:65–77Bok K, Hwang J, Lim J et al (2017) An efficient MapReduce scheduling scheme for processing large multimedia data. Multimed Tools Appl 76(16):1–24Chen Y, Borthakur D, Borthakur D et al (2012) Energy efficiency for large-scale MapReduce workloads with significant interactive analysis. In: ACM european conference on computer systems, pp 43–56Mashayekhy L, Nejad M, Grosu D et al (2015) Energy-aware scheduling of MapReduce jobs for big data applications. IEEE Trans Parallel Distrib Syst 26(10):2720–2733Lei H, Zhang T, Liu Y et al (2015) SGEESS: smart green energy-efficient scheduling strategy with dynamic electricity price for data center. J Syst Softw 108:23–38Oliveira D, Ocana K, Baiao F et al (2012) A provenance-based adaptive scheduling heuristic for parallel scientific workflows in clouds. J Grid Comput 10(3):521–552Li S, Hu S, Abdelzaher T (2015) The packing server for real-time scheduling of MapReduce workflows. In: IEEE real-time and embedded technology and applications symposium, pp 51–62Cai Z, Li X, Ruiz R et al (2017) A delay-based dynamic scheduling algorithm for bag-of-task workflows with stochastic task execution times in clouds. Future Gener Comput Syst 71:57–72Cai Z, Li X, Ruiz R (2017) Resource provisioning for task-batch based workflows with deadlines in public clouds. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2017.2663426Cai Z, Li X, Gupta J (2016) Heuristics for provisioning services to workflows in XaaS clouds. IEEE Trans Serv Comput 9(2):250–263Li X, Cai Z (2017) Elastic resource provisioning for cloud workflow applications. IEEE Trans Autom Sci Eng 14(2):1195–1210Tang Z, Liu M, Ammar A et al (2014) An optimized MapReduce workflow scheduling algorithm for heterogeneous computing. J Supercomput 72(6):1–21Xu C, Yang J, Yin K et al (2017) Optimal construction of virtual networks for cloud-based MapReduce workflows. Comput Netw 112:194–207Chiara S, Danilo A, Gianpaolo C et al (2013) Optimizing service selection and allocation in situational computing applications. IEEE Trans Serv Comput 6(3):414–428Baresi L, Elisabetta D, Carlo G et al (2007) A framework for the deployment of adaptable web service compositions. Serv Oriented Comput Appl 1(1):75–91Lim H, Herodotou H, Babu S (2012) Stubby: a transformation-based optimizer for MapReduce workflows. VLDB Endow 5(11):1196–1207Ke H, Li P, Guo S et al (2016) On traffic-aware partition and aggregation in MapReduce for big data applications. IEEE Trans Parallel Distrib Syst 27(3):818–828Yu W, Wang Y, Que X et al (2015) Virtual shuffling for efficient data movement in MapReduce. IEEE Trans Comput 64(2):556–568Chowdhury M, Zaharia M, Ma J et al (2011) Managing data transfers in computer clusters with orchestra. ACM SIGCOMM Comput Commun 41(4):98–109Guo D, Xie J, Zhou X et al (2015) Exploiting efficient and scalable shuffle transfers in future data center network. IEEE Trans Parallel Distrib Syst 26(4):997–1009Li D, Yu Y, He W et al (2015) Willow: saving data center network energy for network-limited flows. IEEE Trans Parallel Distrib Syst 26(9):2610–2620Tan J, Meng X, Zhang L (2013) Coupling task progress for MapReduce resource-aware scheduling. In: IEEE INFOCOM, pp 1618–1626Hammoud M, Rehman M, Sakr M (2012) Center-of-gravity reduce task scheduling to lower MapReduce network traffic. In: International conference on cloud computing, pp 49–58Guo Z, Fox G, Zhou M et al (2012) Improving resource utilization in MapReduce. In: International conference on cluster computing, pp 402–410Fischer M, Su X, Yin Y (2010) Assigning tasks for efficiency in Hadoop. In: Proceedings of the 22nd ACM symposium on parallelism in algorithms and architectures, pp 30–39Zhu Y, Jiang Y, Wu W et al (2014) Minimizing makespan and total completion time in MapReduce-like systems. In: IEEE INFOCOM, pp 2166–2174Kavulya S, Tan J, Gandhi R et al (2010) An analysis of traces from a production MapReduce cluster. In: IEEE/ACM international conference on cluster, cloud and grid computing, pp 94–103Abrishami S, Naghibzadeh M, Epema D (2013) Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service clouds. Future Gener Comput Syst 29(1):158–169Fernando B, Edmundo R (2010) Towards the scheduling of multiple workflows on computational grids. J Grid Comput 8(3):419–441Tiwari N, Sarkar S, Bellur U et al (2015) Classification framework of MapReduce scheduling algorithms. ACM Comput Surv 47(3):1–38Verma A, Cherkasova L, Campbell R (2013) Orchestrating an ensemble of MapReduce jobs for minimizing their makespan. IEEE Trans Dependable Secur Comput 10(5):314–327Heintz B, Chandra A, Sitaraman R et al (2017) End-to-end optimization for geo-distributed MapReduce. IEEE Trans Cloud Comput 4(3):293–306Chen L, Li X (2018) Cloud workflow scheduling with hybrid resource provisioning. J Supercomput 74(12):6529–6553Li X, Jiang T, Ruiz R (2016) Heuristics for periodical batch job scheduling in a MapReduce computing framework. Inf Sci 326:119–133Vanhoucheabcd M, Maenhout B, Tavares L (2008) An evaluation of the adequacy of project network generators with systematically sampled networks. Eur J Oper Res 187(2):511–52
A Guide to the Brain Initiative Cell Census Network Data Ecosystem
Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain
Cellular anatomy of the mouse primary motor cortex.
An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture
Morphological diversity of single neurons in molecularly defined cell types.
Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits
A multimodal cell census and atlas of the mammalian primary motor cortex
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties