15 research outputs found

    Age-specific disparity in insomnia among COVID-19 patients in Fangcang shelter hospitals: a population-based study in Shanghai, China

    Get PDF
    BackgroundFangcang shelter hospitals are quarantine facilities offering primary medical treatment for mild and asymptomatic SARS-CoV-2 cases. Little is known about the age-specific prevalence of insomnia among patients in Fangcang shelter hospitals, particularly in older age groups.MethodsThis cross-sectional study was conducted in the three largest Fangcang shelter hospitals during the lockdown period, from March to May 2022, in Shanghai. The patients’ demographic and medical information was recorded. Insomnia was defined according to the prescriptions for zolpidem and estazolam. The overall and age-specific prevalence and the risk factors of insomnia were investigated through regression models.ResultsA total of 2,39,448 patients were included in this study (59.09% of the patients were male, the median age was 42, and 73.41% of the patients were asymptomatic), with the prevalence of insomnia being 3.1%. The prevalence of insomnia varied across different age groups (<18 years: 0.23%, 18–64 years: 2.64%, and ≥65 years: 10.36%). SARS-CoV-2 vaccine, regardless of the number of doses, was significantly associated with a decreased risk of insomnia for the group aged ≥65 years. Three doses of the vaccine reduced the risk of insomnia for patients aged 18–64 years. An extra day in the hospital significantly increased the risk of insomnia by approximately 10% for all age groups. Mild symptoms were significantly associated with a higher risk of insomnia among patients aged <65 years old, while being male and residing in the surrounding area were negatively associated with insomnia for all adults.ConclusionThis study observed that older patients were a high-risk population for developing insomnia in Fangcang shelter hospitals. SARS-CoV-2 vaccination might decrease the risk of insomnia in adults, especially the older adult, which indicates the benefits of vaccination for reducing insomnia among infected patients

    iTRAQ-Based Quantitative Proteomics Indicated Nrf2/OPTN-Mediated Mitophagy Inhibits NLRP3 Inflammasome Activation after Intracerebral Hemorrhage

    No full text
    Intracerebral hemorrhage- (ICH-) induced secondary brain injury (SBI) is a very complex pathophysiological process. However, the molecular mechanisms and drug targets of SBI are highly intricate and still elusive, yet a clear understanding is crucial for the treatment of SBI. In the current study, we aimed to confirm that nuclear factor-E2-related factor 2 (Nrf2)/Optineurin- (OPTN-) mediated mitophagy alleviated SBI by inhibiting nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation based on the isobaric tag for relative and absolute quantization (iTRAQ) quantification proteomics. Human ICH brain specimens were collected for iTRAQ-based proteomics analysis. Male Nrf2 wild-type (WT) and knockout (KO) mice were employed to establish ICH murine models. The survival rate, hematoma volume, neurofunctional outcomes, blood-brain barrier (BBB) permeability, brain edema, spatial neuronal death, NLRP3 inflammasome, inflammatory response, mitochondrial function, and mitophagy level were evaluated after ICH. The iTRAQ quantification analysis showed that the differentially expressed proteins (DEPs), Nrf2 and NLRP3, were closely associated with the initiation and development of SBI after ICH. The Nrf2 KO mice had a significantly lower survival rate, bigger hematoma volume, worse neurological deficits, and increased BBB disruption, brain edema, and neuronal death when compared with the Nrf2 WT mice after ICH. Furthermore, Nrf2 KO enhanced NLRP3 inflammasome activation and neuroinflammation as evidenced by the NF-ÎşB activation and various proinflammatory cytokine releases following ICH. Moreover, Nrf2 could interact with and modulate the mitophagy receptor OPTN, further mediating mitophagy to remove dysfunctional mitochondria after ICH. Furthermore, OPTN small interfering RNA (siRNA) increased the NLRP3 inflammasome activation by downregulating mitophagy level and enhancing mitochondrial damage in the Nrf2 WT mice after ICH. Together, our data indicated that Nrf2/OPTN inhibited NLRP3 inflammasome activation, possibly via modulating mitophagy, therefore alleviating SBI after ICH

    Ghrelin Attenuates Intestinal Barrier Dysfunction Following Intracerebral Hemorrhage in Mice

    No full text
    Intestinal barrier dysfunction remains a critical problem in patients with intracerebral hemorrhage (ICH) and is associated with poor prognosis. Ghrelin, a brain-gut peptide, has been shown to exert protection in animal models of gastrointestinal injury. However, the effect of ghrelin on intestinal barrier dysfunction post-ICH and its possible underlying mechanisms are still unknown. This study was designed to investigate whether ghrelin administration attenuates intestinal barrier dysfunction in experimental ICH using an intrastriatal autologous blood infusion mouse model. Our data showed that treatment with ghrelin markedly attenuated intestinal mucosal injury at both histomorphometric and ultrastructural levels post-ICH. Ghrelin reduced ICH-induced intestinal permeability according to fluorescein isothiocyanate conjugated-dextran (FITC-D) and Evans blue extravasation assays. Concomitantly, the intestinal tight junction-related protein markers, Zonula occludens-1 (ZO-1) and claudin-5 were upregulated by ghrelin post-ICH. Additionally, ghrelin reduced intestinal intercellular adhesion molecule-1 (ICAM-1) expression at the mRNA and protein levels following ICH. Furthermore, ghrelin suppressed the translocation of intestinal endotoxin post-ICH. These changes were accompanied by improved survival rates and an attenuation of body weight loss post-ICH. In conclusion, our results suggest that ghrelin reduced intestinal barrier dysfunction, thereby reducing mortality and weight loss, indicating that ghrelin is a potential therapeutic agent in ICH-induced intestinal barrier dysfunction therapy

    Construction and practice of infection prevention and control system in large Fangcang shelter hospitals

    No full text
    The management team from Ruijin Hospital had successively participated in the design, construction and operation of many Fangcang shelter hospitals. Combined with the large scale of the hospital, large amount of patients and medical wastes, high infection risk of staff, this paper summarizes the experience of our team in the prevention and control work from design of Fangcang shelter hospital, infection prevention and control system and operation process, staff training, health management, medical waste management, which may provide reference for the safe and stable operation of large shelter hospitals

    Research on Biomechanical Properties of Laver (<i>Porphyra yezoensis</i> Ueda) for Mechanical Harvesting and Postharvest Transportation

    No full text
    This paper investigates the effect of origin, harvest times and loading rates on the biomechanical properties of laver, aiming to develop laver harvesting and postharvest transportation equipment. The values and changing regular of biomechanical properties were obtained via a combination of morphological and mechanical tests as well as numerical statistics. The correlation between biological and mechanical properties was detected simultaneously. The results show that the biological properties are affected dramatically by origin and harvest times. The values of length, width, thickness and mass of laver from Dalian exceeded those found in Qingdao and Lianyungang. The width, thickness and mass increased, whereas the length-to-width ratio decreased with the increasing harvest time. Meanwhile, the mechanical properties are also influenced significantly by loading rates, origin and harvest times. Tensile and shear strength displayed an overall decreasing trend, whereas adhesive force and adhesiveness in general increased with the increasing loading rate. The tensile and shear strengths were greatest for laver from Qingdao, while the adhesive force and adhesiveness were greatest for laver from Dalian. Tensile strength, adhesive force and adhesiveness increased, and shear strength decreased with the delay of harvest time. In addition, the tensile strength and thickness of the laver at different harvest times were positively correlated. The maximum tensile strength, shear strength, adhesive force and adhesiveness were 3.56 MPa, 4.79 MPa, 0.32 N and 1.01 N·mm, respectively. These results are believed to be able to provide a reference for the design and optimization of machineries such as harvest, postharvest transportation and laver processing

    Tensile and shear mechanical properties of laver (Porphyra yezoensis Ueda)

    No full text
    ABSTRACTThe tensile and shear mechanical properties of laver were investigated in order to reduce the tensile and shear forces, tensile and shear energies consumption during the harvesting and processing. Loading rate, harvest time and origin were selected as the effect factors for laver tensile and shear tests, while mathematical models of the variation of tensile and shear mechanical properties with three factors were also developed. The following results were obtained: tensile force, shear force, tensile energy and shear energy of laver are affected by loading rate, harvest time and origin. Tensile force, shear force and shear energy were generally inversely proportional to the loading rate, while tensile energy was generally positively proportional to the loading rate. The minimum values are 0.0557 N, 0.1650 N, 0.7267 N.mm and 0.7393 N.mm, respectively. Tensile force, shear force and tensile energy all increased with increasing harvest time, while shear energy decreased with increasing harvest time. The maximum values are 0.1581 N, 0.4437 N, 1.5367 N.mm and 1.5177 N.mm, respectively. Both tensile and shear forces (0.0857 N, 0.2549 N) were greatest in Dalian for the first harvest of laver. However, the first harvest of Qingdao laver has the lowest tensile and shear energy. The microstructure after stretching and shearing changed significantly with normally shaped cells deformed and ruptured. The changes in microstructure were consistent with the macro-mechanical properties, verifying the reliability of the test data

    An ANSYS/LS-DYNA Simulation and Experimental Study of Sectional Hob Type Laver Harvesting Device

    No full text
    To solve the problems of low net harvesting rate, high loss rate, and uneven stubble height during the harvest of laver, the laver (Porphyra yezoensis) was selected as the research object, the analysis of the cultivation mode, biomechanical characteristics, harvesting trajectory and force of laver were carried out. A sectional hob type harvesting device was designed. A rigid-flexible coupling model related to the interaction between the cutting mechanism and the laver was constructed based on ANSYS/LS-DYNA. The Box&ndash;Behnken design method was used to simulate the effects of different structural parameters and process parameters on the force of laver cutting, and the bench test of the laver harvesting device was carried out. The simulation results showed that the four factors that significantly affect the force exerted on the laver during cutting in proper order were cutter revolving speed, knife extension length, knife inclination angle and forward velocity. When the combination of the forward velocity, the cutter revolving speed, the knife extension length and inclination angle was 0.77 m/s, 900 r/min, 40 mm, and 110&deg;, respectively, the cutting force on laver was the smallest, which was 4.21 N. The bench test of harvesting performance showed that the cutter revolving speed has a significant impact on the recovery rate, and the forward velocity has a significant impact on the loss rate. When the harvesting speed ratio was &lambda;4 (the cutter revolving speed was 900 r/min and the forward velocity was 0.77 m/s), the net harvesting rate and the loss rate were 97.45% and 3.38%, respectively, and the cutting proportion of laver can reach 77.5%. The results of the study provide a theoretical basis for the development of harvesting for laver

    An ANSYS/LS-DYNA Simulation and Experimental Study of Sectional Hob Type Laver Harvesting Device

    No full text
    To solve the problems of low net harvesting rate, high loss rate, and uneven stubble height during the harvest of laver, the laver (Porphyra yezoensis) was selected as the research object, the analysis of the cultivation mode, biomechanical characteristics, harvesting trajectory and force of laver were carried out. A sectional hob type harvesting device was designed. A rigid-flexible coupling model related to the interaction between the cutting mechanism and the laver was constructed based on ANSYS/LS-DYNA. The Box–Behnken design method was used to simulate the effects of different structural parameters and process parameters on the force of laver cutting, and the bench test of the laver harvesting device was carried out. The simulation results showed that the four factors that significantly affect the force exerted on the laver during cutting in proper order were cutter revolving speed, knife extension length, knife inclination angle and forward velocity. When the combination of the forward velocity, the cutter revolving speed, the knife extension length and inclination angle was 0.77 m/s, 900 r/min, 40 mm, and 110°, respectively, the cutting force on laver was the smallest, which was 4.21 N. The bench test of harvesting performance showed that the cutter revolving speed has a significant impact on the recovery rate, and the forward velocity has a significant impact on the loss rate. When the harvesting speed ratio was λ4 (the cutter revolving speed was 900 r/min and the forward velocity was 0.77 m/s), the net harvesting rate and the loss rate were 97.45% and 3.38%, respectively, and the cutting proportion of laver can reach 77.5%. The results of the study provide a theoretical basis for the development of harvesting for laver
    corecore