40,433 research outputs found
Planetary companions orbiting M giants HD 208527 and HD 220074
Aims. The purpose of the present study is to research the origin of planetary
companions by using a precise radial velocity (RV) survey.
Methods. The high-resolution spectroscopy of the fiber-fed Bohyunsan
Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy
Observatory (BOAO) is used from September 2008 to June 2012.
Results. We report the detection of two exoplanets in orbit around HD 208527
and HD 220074 exhibiting periodic variations in RV of 875.5 +/- 5.8 and 672.1
+/- 3.7 days. The RV variations are not apparently related to the surface
inhomogeneities and a Keplerian motion of the planetary companion is the most
likely explanation. Assuming possible stellar masses of 1.6 +/- 0.4 and 1.2 +/-
0.3 M_Sun, we obtain the minimum masses for the exoplanets of 9.9 +/- 1.7 and
11.1 +/- 1.8 M_Jup around HD 208527 and HD 220074 with an orbital semi-major
axis of 2.1 +/- 0.2 and 1.6 +/- 0.1 AU and an eccentricity of 0.08 and 0.14,
respectively. We also find that the previously known spectral classification of
HD 208527 and HD 220074 was in error: Our new estimation of stellar parameters
suggest that both HD 208527 and HD 220074 are M giants. Therefore, HD 208527
and HD 220074 are so far the first candidate M giants to harbor a planetary
companion.Comment: 7 pages, 9 figures, 4 tables, accepted for publisation in Astronomy &
Astrophysic
Birthrates and delay times of Type Ia supernovae
Type Ia supernovae (SNe Ia) play an important role in diverse areas of
astrophysics, from the chemical evolution of galaxies to observational
cosmology. However, the nature of the progenitors of SNe Ia is still unclear.
In this paper, according to a detailed binary population synthesis study, we
obtained SN Ia birthrates and delay times from different progenitor models, and
compared them with observations. We find that the Galactic SN Ia birthrate from
the double-degenerate (DD) model is close to those inferred from observations,
while the birthrate from the single-degenerate (SD) model accounts for only
about 1/2-2/3 of the observations. If a single starburst is assumed, the
distribution of the delay times of SNe Ia from the SD model is a weak
bimodality, where the WD + He channel contributes to the SNe Ia with delay
times shorter than 100Myr, and the WD + MS and WD + RG channels to those with
age longer than 1Gyr.Comment: 11 pages, 2 figures, accepted by Science in China Series G (Dec.30,
2009
- …