3,276 research outputs found

    Interplay between Quantum Size Effect and Strain Effect on Growth of Nanoscale Metal Thin Film

    Full text link
    We develop a theoretical framework to investigate the interplay between quantum size effect (QSE) and strain effect on the stability of metal nanofilms. The QSE and strain effect are shown to be coupled through the concept of "quantum electronic stress. First-principles calculations reveal large quantum oscillations in the surface stress of metal nanofilms as a function of film thickness. This adds extrinsically additional strain-coupled quantum oscillations to surface energy of strained metal nanofilms. Our theory enables a quantitative estimation of the amount of strain in experimental samples, and suggests strain be an important factor contributing to the discrepancies between the existing theories and experiments

    Effects of tidally enhanced stellar wind on the horizontal branch morphology of globular clusters

    Full text link
    Metallicity is the first parameter to influence the horizontal branch (HB) morphology of globular clusters (GCs). It has been found, however, that some other parameters may also play an important role in affecting the morphology. While the nature of these important parameters remains unclear, they are believed to be likely correlated with wind mass-loss of red giants, since this mass loss determines their subsequent locations on the HB. Unfortunately, the mass loss during the red giant stages of the stellar evolution is poorly understood at present. The stellar winds of red giants may be tidally enhanced by companion stars if they are in binary systems. We investigate evolutionary consequences of red giants in binaries by including tidally enhanced stellar winds, and examine the effects on the HB morphology of GCs. We find that red, blue, and extreme horizontal branch stars are all produced under the effects of tidally enhanced stellar wind without any additional assumptions on the mass-loss dispersion. Furthermore, the horizontal branch morphology is found to be insensitive to the tidal enhancement parameter, Bw. We compare our theoretical results with the observed horizontal branch morphology of globular cluster NGC 2808, and find that the basic morphology of the horizontal branch can be well reproduced. The number of blue horizontal branch stars in our calculations, however, is lower than that of NGC 2808.Comment: 7 pages, 4 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    Bilateral congenital choanal atresia and osteoma of ethmoid sinus with supernumerary nostril: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Congenital choanal atresia is a relatively rare deformity, especially bilateral congenital choanal atresia. We report a case of bilateral congenital choanal atresia in a 22-year-old Chinese man, who was also diagnosed with congenital right accessory nasal deformity, osteoma of his left ethmoid sinus and congenital keratoleukoma of his right eye.</p> <p>Case presentation</p> <p>A 22-year-old Chinese man presented with mouth breathing, sleep snoring and difficult feeding after birth, with no olfactory sensation. Three-dimensional computed tomography revealed bilateral choanal atresia and a high density bony shadow in his left ethmoid sinus that extended to his left frontal sinus.</p> <p>Conclusions</p> <p>Choanal atresia is often accompanied by other congenital abnormalities. To the best of our knowledge, this is the first report of choanal atresia accompanied by congenital accessory nasal deformity and congenital keratoleukoma.</p

    Effects of fully open-air [CO2] elevation on leaf photosynthesis and ultrastructure of Isatis indigotica Fort

    Get PDF
    Traditional Chinese medicine relies heavily on herbs, yet there is no information on how these herb plants would respond to climate change. In order to gain insight into such response, we studied the effect of elevated [CO2] on Isatis indigotica Fort, one of the most popular Chinese herb plants. The changes in leaf photosynthesis,chlorophyll fluorescence, leaf ultrastructure and biomass yield in response to elevated [CO2] (550619 mmol mol–1) were determined at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic ability of I. indigotica was improved under elevated [CO2]. Elevated [CO2] increased net photosynthetic rate (PN), water use efficiency (WUE) and maximum rate of electron transport (Jmax) of upper most fully-expended leaves, but not stomatal conductance (gs), transpiration ratio (Tr) and maximum velocity of carboxylation (Vc,max). Elevated [CO2] significantly increased leaf intrinsic efficiency of PSII (Fv’/Fm’) and quantum yield of PSII(WPSII), but decreased leaf non-photochemical quenching (NPQ), and did not affect leaf proportion of open PSII reaction centers (qP) and maximum quantum efficiency of PSII (Fv/Fm). The structural chloroplast membrane, grana layer and stroma thylakoid membranes were intact under elevated [CO2], though more starch grains were accumulated within the chloroplasts than that of under ambient [CO2]. While the yield of I. indigotica was higher due to the improved photosynthesis under elevated [CO2], the content of adenosine, one of the functional ingredients in indigowoad root was not affected

    catena-Poly[[{2-[(2-hy­droxy­eth­yl)imino­meth­yl]-6-meth­oxy­phenolato}copper(II)]-μ-thio­cyanato]

    Get PDF
    In the title thio­cyanate-bridged polynuclear copper(II) complex, [Cu(C10H12NO3)(NCS)]n, the Cu atom is five-coordinated in a square-pyramidal geometry, with one phenolato O, one imino N and one hy­droxy O atom of a Schiff base ligand and one thio­cyanato N atom defining the basal plane, and with one thio­cyanato S atom occupying the apical position. In the crystal structure, pairs of adjacent complex mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds into dimers. The dimers are further linked via Cu⋯S inter­actions, forming two-dimensional layers parallel to the bc plane
    corecore