44 research outputs found

    Three-dimensional structure and antigenicity of transmembrane-protein peptides of the human immunodeficiency virus type 1 Effects of a neutralization-escape substitution

    Get PDF
    AbstractA point mutation (Ala-589 to Thr) in the transmembrane protein of the human immunodeficiency virus type 1 (HIV-1) has been shown to decrease the sensitivity of the virus to the neutralizing effect of human HIV-1 specific antibodies [(1990) J. Virol. 64, 3240-3248]. Here 17-residue peptides with the parental and mutant sequences were compared: the parental peptide bound antibodies of sera from HIV-1 infected persons more frequently and with higher affinity than the mutant peptide. However, according to circular dichroism (CD), NMR spectroscopy and molecular modelling the peptides have indistinguishable backbone conformations under a variety of experimental conditions. These techniques showed for both peptides that no ordered helix was present in water solution. However, for both peptides in alcohol-water solutions approximately 60% α-helix coula be induced. The three-dimensional structures of these peptides provide a basis for understanding how this mutation in the transmembrane protein may affect the interaction with both the outer envelope glycoprotein and with antibodies

    Cellular Chaperone Function of Intrinsically Disordered Dehydrin ERD14.

    Get PDF
    Disordered plant chaperones play key roles in helping plants survive in harsh conditions, and they are indispensable for seeds to remain viable. Aside from well-known and thoroughly characterized globular chaperone proteins, there are a number of intrinsically disordered proteins (IDPs) that can also serve as highly effective protecting agents in the cells. One of the largest groups of disordered chaperones is the group of dehydrins, proteins that are expressed at high levels under different abiotic stress conditions, such as drought, high temperature, or osmotic stress. Dehydrins are characterized by the presence of different conserved sequence motifs that also serve as the basis for their categorization. Despite their accepted importance, the exact role and relevance of the conserved regions have not yet been formally addressed. Here, we explored the involvement of each conserved segment in the protective function of the intrinsically disordered stress protein (IDSP) A. thaliana's Early Response to Dehydration (ERD14). We show that segments that are directly involved in partner binding, and others that are not, are equally necessary for proper function and that cellular protection emerges from the balanced interplay of different regions of ERD14

    Wide-line NMR and DSC studies on intrinsically disordered p53 transactivation domain and its helically pre-structured segment

    Get PDF
    Wide-line 1H NMR intensity and differential scanning calorimetry measurements were carried out on the intrinsically disordered 73-residue full transactivation domain (TAD) of p53 tumor suppressor protein and two peptides, one a wild type p53 TAD peptide with a helix pre-structuring property and a mutant peptide with a disabled helix-forming propensity in order to characterize their water and ion binding characteristics. By quantifying the number of hydrate water molecules, we provide microscopic description for the interactions of water with a wild-type p53 TAD and two p53 TAD peptides. The results provide direct evidence that intrinsically disordered proteins (IDPs) and a less structured peptide not only have a higher hydration capacity than globular proteins but also are able to bind a larger amount of charged solute ions

    Discrete molecular dynamics can predict helical prestructured motifs in disordered proteins.

    Get PDF
    Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating alpha-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts alpha-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect alpha-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available

    Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins

    Full text link
    Background: IDPs function without relying on three-dimensional structures. No clear rationale for such a behavior is available yet. PreSMos are transient secondary structures observed in the target-free IDPs and serve as the target-binding active motifs in IDPs. Prolines are frequently found in the flanking regions of PreSMos. Contribution of prolines to the conformational stability of the helical PreSMos in IDPs is investigated. Methods: MD simulations are performed for several IDP segments containing a helical PreSMo and the flanking prolines. To measure the influence of flanking-prolines on the structural content of a helical PreSMo calculations were done for wild type as well as for mutant segments with Pro→Asp, His, Lys, or Ala. The change in the helicity due to removal of a proline was measured both for the PreSMo region and for the flanking regions. Results: The α-helical content in ~70% of the helical PreSMos at the early stage of simulation decreases due to replacement of an N-terminal flanking proline by other residues whereas the helix content in nearly all PreSMos increases when the same replacements occur at the C-terminal flanking region. The helix destabilizing/terminating role of the C-terminal flanking prolines is more pronounced than the helix promoting effect of the N-terminal flanking prolines. General significance: This work represents a novel example demonstrating that a proline is encoded in an IDP with a defined purpose. The helical PreSMos presage their target-bound conformations. As they most likely mediate IDP-target binding via conformational selection their helical content can be an important feature for IDP function. Keywords: Flanking proline; Intrinsically disordered protein (IDP); Molecular dynamics simulation; PreSMo (Pre-Structured Motif). Copyright © 2013 Elsevier B.V. All rights reserved

    Transient Secondary Structures as General Target-Binding Motifs in Intrinsically Disordered Proteins

    No full text
    Intrinsically disordered proteins (IDPs) are unorthodox proteins that do not form three-dimensional structures under non-denaturing conditions, but perform important biological functions. In addition, IDPs are associated with many critical diseases including cancers, neurodegenerative diseases, and viral diseases. Due to the generic name of “unstructured„ proteins used for IDPs in the early days, the notion that IDPs would be completely unstructured down to the level of secondary structures has prevailed for a long time. During the last two decades, ample evidence has been accumulated showing that IDPs in their target-free state are pre-populated with transient secondary structures critical for target binding. Nevertheless, such a message did not seem to have reached with sufficient clarity to the IDP or protein science community largely because similar but different expressions were used to denote the fundamentally same phenomenon of presence of such transient secondary structures, which is not surprising for a quickly evolving field. Here, we summarize the critical roles that these transient secondary structures play for diverse functions of IDPs by describing how various expressions referring to transient secondary structures have been used in different contexts
    corecore