152 research outputs found
Evolutionary Approaches to Optimization Problems in Chimera Topologies
Chimera graphs define the topology of one of the first commercially available
quantum computers. A variety of optimization problems have been mapped to this
topology to evaluate the behavior of quantum enhanced optimization heuristics
in relation to other optimizers, being able to efficiently solve problems
classically to use them as benchmarks for quantum machines. In this paper we
investigate for the first time the use of Evolutionary Algorithms (EAs) on
Ising spin glass instances defined on the Chimera topology. Three genetic
algorithms (GAs) and three estimation of distribution algorithms (EDAs) are
evaluated over hard instances of the Ising spin glass constructed from
Sidon sets. We focus on determining whether the information about the topology
of the graph can be used to improve the results of EAs and on identifying the
characteristics of the Ising instances that influence the success rate of GAs
and EDAs.Comment: 8 pages, 5 figures, 3 table
Cl415, a carbapenem-resistant Acinetobacter baumannii isolate containing four AbaR4 and a new variant of AbGRI2, represents a novel global clone 2 strain.
ObjectivesTo determine the genetic context of genes conferring antibiotic resistance on the carbapenem-resistant Acinetobacter baumannii Cl415, recovered in 2017 at El Youssef Hospital Centre in Akkar Governorate, North Lebanon.MethodsAntibiotic resistance phenotype for 22 antibiotics was determined using disc diffusion or MIC determination. The whole-genome sequence of Cl415 was determined using a combination of the Illumina MiSeq and Oxford Nanopore (MinION) platforms. Complete genome was assembled using Unicycler and antibiotic resistance determinants and ISs were identified using ResFinder and ISFinder, respectively.ResultsCl415 is a global clone 2 (GC2) strain and belongs to the most common STs of this clone, ST2IP and ST218OX. Cl415 is resistant to several antibiotics, including aminoglycosides and carbapenems to a high level. Genomic analysis of Cl415 revealed that it carries four chromosomal AbaR4 copies. One copy was found in the comM gene replacing the AbGRI1 island. Cl415 also contains a novel variant of AbGRI2, herein called AbGRI2-15, carrying only the blaTEM and aphA1 resistance genes. Cl415 belongs to a subclade of GC2 strains that appear to have diverged recently with a wide geographical distribution.ConclusionsThe resistance gene complement of Cl415 was found in the chromosome with four oxa23 located in AbaR4 copies and the remaining genes in a novel variant of the AbGRI2 resistance island. Cl415 was isolated in Lebanon, but phylogenetic analysis suggests that Cl415 represents a new lineage with global distribution within GC2
Requirement of the Dynein-Adaptor Spindly for Mitotic and Post-Mitotic Functions in Drosophila
Spindly was originally identified as a specific regulator of Dynein activity at the kinetochore. In early prometaphase, Spindly recruits the Dynein/Dynactin complex, promoting the establishment of stable kinetochore-microtubule interactions and progression into anaphase. While details of Spindly function in mitosis have been worked out in cultured human cells and in the C. elegans zygote, the function of Spindly within the context of an organism has not yet been addressed. Here, we present loss- and gain-of-function studies of Spindly using transgenic RNAi in Drosophila. Knock-down of Spindly in the female germ line results in mitotic arrest during embryonic cleavage divisions. We investigated the requirements of Spindly protein domains for its localisation and function, and found that the carboxy-terminal region controls Spindly localisation in a cell-type specific manner. Overexpression of Spindly in the female germ line is embryonic lethal and results in altered egg morphology. To determine whether Spindly plays a role in post-mitotic cells, we altered Spindly protein levels in migrating cells and found that ovarian border cell migration is sensitive to the levels of Spindly protein. Our study uncovers novel functions of Spindly and a differential, functional requirement for its carboxy-terminal region in Drosophila
Phylogenomics of two ST1 antibiotic-susceptible non-clinical <i>Acinetobacter baumannii</i> strains reveals multiple lineages and complex evolutionary history in global clone 1.
Acinetobacter baumannii is an opportunistic pathogen that is difficult to treat due to its resistance to extreme conditions, including desiccation and antibiotics. Most strains causing outbreaks around the world belong to two main global lineages, namely global clones 1 and 2 (GC1 and GC2). Here, we used a combination of Illumina short read and MinION (Oxford Nanopore) long-read sequence data with a hybrid assembly approach to complete the genome sequence of two antibiotic-sensitive GC1 strains, Ex003 and Ax270, recovered in Lebanon from water and a rectal swab of a cat, respectively. Phylogenetic analysis of Ax270 and Ex003 with 186 publicly available GC1 genomes revealed two major clades, including five main lineages (L1-L5), and four single-isolate lineages outside of the two clades. Ax270 and Ex003, along with AB307-0294 and MRSN7213 (both predicted antibiotic-susceptible isolates) represent these individual lineages. Antibiotic resistance islands and transposons interrupting the comM gene remain important features in L1-L5, with L1 associated with the AbaR-type resistance islands, L2 with AbaR4, L3 strains containing either AbaR4 or its variants as well as Tn6022::ISAba42, and L4 and L5 associated with Tn6022 or its variants. Analysis of the capsule (KL) and outer core (OCL) polysaccharide loci further revealed a complex evolutionary history probably involving many recombination events. As more genomes become available, more GC1 lineages continue to emerge. However, genome sequence data from more diverse geographical regions are needed to draw a more accurate population structure of this globally distributed clone
Molecular epidemiology and carbapenem resistance mechanisms in Acinetobacter baumannii strains isolated from different environments in Lebanon
International audienc
Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks
Undirected graphical models are widely used in statistics, physics and
machine vision. However Bayesian parameter estimation for undirected models is
extremely challenging, since evaluation of the posterior typically involves the
calculation of an intractable normalising constant. This problem has received
much attention, but very little of this has focussed on the important practical
case where the data consists of noisy or incomplete observations of the
underlying hidden structure. This paper specifically addresses this problem,
comparing two alternative methodologies. In the first of these approaches
particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently
explore the parameter space, combined with the exchange algorithm (Murray et
al., 2006) for avoiding the calculation of the intractable normalising constant
(a proof showing that this combination targets the correct distribution in
found in a supplementary appendix online). This approach is compared with
approximate Bayesian computation (Pritchard et al., 1999). Applications to
estimating the parameters of Ising models and exponential random graphs from
noisy data are presented. Each algorithm used in the paper targets an
approximation to the true posterior due to the use of MCMC to simulate from the
latent graphical model, in lieu of being able to do this exactly in general.
The supplementary appendix also describes the nature of the resulting
approximation.Comment: 26 pages, 2 figures, accepted in Journal of Computational and
Graphical Statistics (http://www.amstat.org/publications/jcgs.cfm
Extra-human epidemiology of Acinetobacter baumannii in Lebanon
Presence of Acinetobacter baumannii outside hospitals is still a controversial issue. The objective of our study was to explore the extra hospital epidemiology of A. baumannii in Lebanon. From February 2012 to October 2013, a total of 73 water samples, 51 soil samples, 37 raw cow milk samples, 50 cow meat samples, 7 raw cheese samples and 379 animal samples were analysed by cultural methods for the presence of A. baumannii. Species identification was performed by rpoB gene sequencing. Antibiotic susceptibility was investigated and A. baumannii population was studied by two genotyping approaches: Multilocus Sequence Typing (MLST) and blaOXA-51 Sequence-Based Typing (blaOXA-51 SBT). A. baumannii was detected in 6.9% of water samples, 2.7% of milk samples, 8.0% of meat samples, 14.3% of cheese samples and 7.7% of animal samples. All isolates showed a susceptible phenotype against most of the antibiotics tested and lacked carbapenemase encoding genes except one that harboured a blaOXA-143 gene. MLST analysis revealed the presence of 36 sequence types (ST), among them 24 were novel ST(s), reported for the first time in this study. blaOXA-51 SBT showed the presence of 34 variants, among them 21 were novel and all isolated from animal origin. Finally, 30 isolates had new partial rpoB sequences and were considered as putative new Acinetobacter species. In conclusion, animals can be a potential reservoir for A. baumannii and the dissemination of new emerging carbapenemases. The role of novel identified animal clones in community-acquired infections should be investigated
Current molecular methods in epidemiological typing of Acinetobacter baumannii
International audienc
Genomic history of the seventh pandemic of cholera in Africa.
The seventh cholera pandemic has heavily affected Africa, although the origin and continental spread of the disease remain undefined. We used genomic data from 1070 Vibrio cholerae O1 isolates, across 45 African countries and over a 49-year period, to show that past epidemics were attributable to a single expanded lineage. This lineage was introduced at least 11 times since 1970, into two main regions, West Africa and East/Southern Africa, causing epidemics that lasted up to 28 years. The last five introductions into Africa, all from Asia, involved multidrug-resistant sublineages that replaced antibiotic-susceptible sublineages after 2000. This phylogenetic framework describes the periodicity of lineage introduction and the stable routes of cholera spread, which should inform the rational design of control measures for cholera in Africa
- …