176 research outputs found
Measurement of the Density of Base Fluids at Pressures 0.422 to 2.20 Gpa
The influence of pressure on the density of six base fluids is experimentally studied for a range of pressures from 0.422 to 2.20 GPa. An important parameter used to describe the results is the change in relative volume with change in pressure dv sub r/dp. For pressures less than the solidification pressure (p ps) a small change in pressure results in a large change in dv sub r/ps. For pressures greater than the solidification pressure (p ps) there is no change in dv sub r/dp with changing pressure. The solidification pressures of the base fluids varies considerably, as do the slopes that the experimental data assumes for p ps. A new formula is developed that describes the effect of pressure on density in terms of four constants. These constants vary for the different base fluids tested
Casimir micro-sphere diclusters and three-body effects in fluids
Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that
Casimir forces induced by the material-dispersion properties of certain
dielectrics can give rise to stable configurations of objects. This phenomenon
was illustrated via a dicluster configuration of non-touching objects
consisting of two spheres immersed in a fluid and suspended against gravity
above a plate. Here, we examine these predictions from the perspective of a
practical experiment and consider the influence of non-additive, three-body,
and nonzero-temperature effects on the stability of the two spheres. We
conclude that the presence of Brownian motion reduces the set of experimentally
realizable silicon/teflon spherical diclusters to those consisting of layered
micro-spheres, such as the hollow- core (spherical shells) considered here.Comment: 11 pages, 9 figure
Lubricated revolute joints in rigid multibody systems
The main purpose of this work is to present a general methodology for modeling lubricated revolute joints in constrained rigid multibody systems. In the dynamic analysis of journal-bearings, the hydrodynamic forces, which include both squeeze and wedge effects, generated by the lubricant fluid, oppose the journal motion. The hydrodynamic forces are obtained by integrating the pressure distribution evaluated with the aid of Reynoldsâ equation, written for the dynamic regime. The hydrodynamic forces built up by the lubricant fluid are evaluated from the system state variables and included into the equations of motion of the multibody system. Numerical examples are presented in order to demonstrate the use of the methodologies and procedures described in this work.Fundação para a CiĂȘncia e a Tecnologia (FCT
An analytical approach for prediction of elastohydrodynamic friction with inlet shear heating and starvation
An analytical friction model is presented, predicting the coefficient of friction in elastohydrodynamic (EHD) contacts. Three fully formulated SAE 75W-90 axle lubricants are examined. The effect of inlet shear heating (ISH) and starvation is accounted for in the developed friction model. The film thickness and the predicted friction are compared with experimental measurements obtained through optical interferometry and use of a mini traction machine. The results indicate the significant contribution of ISH and starvation on both the film thickness and coefficient of friction. A strong interaction between those two phenomena is also demonstrated, along with their individual and combined contribution on the EHD friction
Spatial rigid-multi-body systems with lubricated spherical clearance joints : modeling and simulation
The dynamic modeling and simulation of spatial rigid-multi-body systems with lubricated spherical joints is the main purpose of the present work. This issue is of paramount importance in the analysis and design of realistic multibody mechanical systems undergoing spatial motion. When the spherical clearance joint is modeled as dry contact; i.e., when there is no lubricant between the mechanical elements which constitute the joint, a body-to-body (typically metal-to-metal) contact takes place. The joint reaction forces in this case are evaluated through a Hertzian-based contact law. A hysteretic damping factor is included in the dry contact force model to account for the energy dissipation during the contact process. The presence of a fluid lubricant avoids the direct metal-to-metal contact. In this situation, the squeeze film action, due to the relative approaching motion between the mechanical joint elements, is considered utilizing the lubrication theory associated with the spherical bearings. In both cases, the intra-joint reaction forces are evaluated as functions of the geometrical, kinematical and physical characteristics of the spherical joint. These forces are then incorporated into a standard formulation of the systemâs governing equations of motion as generalized external forces. A spatial four bar mechanism that includes a spherical clearance joint is considered here as example. The computational simulations are carried out with and without the fluid lubricant, and the results are compared with those obtained when the system is modeled with perfect joints only. From the general results it is observed that the systemâs performance with lubricant effect presents fewer peaks in the kinematic and dynamic outputs, when compared with those from the dry contact joint model.Fundação para a CiĂȘncia e a Tecnologia (FCT
Boundary Conditions for Elastohydrodynamics of Circular Point Contacts
The paper presents the solution of an elastohydrodynamic point contact condition using inlet and outlet lubricant entrainment with partial counter-flow. The inlet and outlet boundaries are determined using potential flow analysis for the pure rolling of contiguous surfaces. This shows that SwiftâStieber boundary conditions best conform to the observed partial counter-flow at the inlet conjunction, satisfying the compatibility condition. For the outlet region, the same is true when PrandtlâHopkins boundary conditions are employed. Using these boundary conditions, the predictions conform closely to the measured pressure distribution using a deposited pressure-sensitive micro-transducer in a ball-to-flat race contact. Furthermore, the predicted conjunctional shape closely conforms to the often observed characteristic keyhole conjunction through optical interferometry. The combined numericalâexperimental analysis with realistic boundary conditions described here has not hitherto been reported in the literature
Tribological performance and tribochemical processes in a DLC/steel system when lubricated in a fully formulated oil and base oil
Diamond-like carbon (DLC) coatings show extremely good promise for a number of applications in automotive components as they exhibit excellent tribological properties such as low friction and good wear resistance. This can impact on improved fuel economy and durability of the engine components. Much work has been reported on the dry sliding of DLC coatings with less so in lubricated contacts and, as such, there is a need to further understand the tribochemistry of lubricated DLC contacts. Commercially-available oils are normally optimised to work on ferrous surfaces. Previous studies on DLC lubricated contacts have tended to use model oil systems rather than fully formulated lubricants and from this an interesting picture of lubrication mechanisms is emerging. Optimising compatibility between a surface and a set of lubricant additives may lead to excellent durability (wear) as well as increased fuel economy (low friction). In this work, the friction and wear properties of a DLC coating under boundary lubrication conditions have been investigated and the tribological performance compared with that of an uncoated steel system. A pin-on-plate tribotester was used to run the experiments using High speed steel (HSS) M2 grade plates coated with 15 at.% hydrogenated DLC (a-C:15H) sliding against cast iron pins. A Group III mineral base oil, fully synthetic Group IV PAO and four different fully formulated oils were used in this study. Furthermore optical and scanning electron microscopes (SEM) were used to observe the wear scar and to assess the durability of the coatings. Energy-Dispersive X-ray analysis (EDX), X-ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy analyses were performed on the tribofilms to understand the tribochemical interactions between oil additives and the a-C:15H coating. This study show that the durability of the a-C:15H coating strongly depends on the selected additive package in the oils. In addition the effect of detergent, dispersant and antioxidants on the performance of the molybdenum-based friction modifier (Mo-FM) and ZDDP anti-wear additive was investigated and results are reported in this paper
Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men
Background: The andropause is associated with declines in serum testosterone (T), loss of muscle mass (sarcopenia) and frailty. Two major interventions purported to offset sarcopenia are anabolic steroid therapies and resistance exercise training (RET). Nonetheless, the efficacy, and physiological and molecular impacts of T therapy adjuvant to short-term RET remain poorly defined.Methods: Eighteen non-hypogonadal healthy older men, 65-75 y, were assigned in a random double-blinded fashion to receive, bi-weekly, either placebo (P, saline, n=9) or T (Sustanon 250 mg, n=9) injections over 6-weeks whole-body RET (3-sets of 8-10 reps at 80% 1-RM). Subjects underwent dual-energy x-ray absorptiometry, ultrasound of vastus lateralis (VL) muscle architecture, and knee-extensor isometric muscle force tests; VL muscle biopsies were taken to quantify myogenic/anabolic gene expression, anabolic signalling, muscle protein synthesis (D2O) and breakdown (extrapolated).Results: T adjuvant to RET, augmented total fat free mass (FFM) (P=0.007), legs fat free mass (P=0.02), and appendicular FFM (P=0.001) gains, while decreasing total fat mass (P=0.02). Augmentations in VL muscle thickness, fascicle length, and quadriceps cross-section area with RET occured to a greater extent in T (P less than 0.05).Total strength (P=0.0009) and maximal voluntary contract (e.g. knee extension at 70°) (P=0.002) increased significantly more in the T group. Mechanistically, both muscle protein synthesis rates (T: 2.13±0.21%·dayâ1 vs. P: 1.34±0.13%·dayâ1, P=0.0009) and absolute breakdown rates (T: 140.2±15.8 vs. P: 90.2±11.7g·day-1, P=0.02) were elevated with T therapy, which led to higher net turnover and protein accretion in the T group (T: 8.3±1.4g·day-1 vs. P: 1.9±1.2 g·day-1, P=0.004). Increases in ribosomal biogenesis (RNA:DNA ratio); mRNA expression relating to T metabolism (Androgen Receptor: 1.4-fold; Srd5a1: 1.6-fold; AKR1C3: 2.1-fold; HSD17ÎČ3: 2-fold); IGF-1-signalling (IGF-1Ea (3.5-fold), IGF-1Ec (3-fold) and myogenic regulatory factors (MRF); as well the activity of anabolic signalling (e.g. mTOR, AKT, RPS6; P less than 0.05) were all upregulated with T therapy. Only T up-regulated mitochondrial citrate synthase activity (P=0.03) and transcription factor A (Tfam) (1.41±0.2-fold, P=0.0002), in addition to PGC1-α mRNA (1.19±0.21-fold, P=0.037).Conclusions: Administration of T adjuvant to RET enhanced skeletal muscle mass and performance, while upregulating myogenic gene programming, myocellular translational efficiency and capacity - collectively resulting in higher protein turnover, and net protein accretion. T coupled with RET is an effective short-term intervention to improve muscle mass/ function in older non-hypogonadal men
- âŠ