259 research outputs found

    Vitamin C Enhances Vitamin E Status and Reduces Oxidative Stress Indicators in Sea Bass Larvae Fed High DHA Microdiets

    Get PDF
    Docosahexaenoic acid (DHA) is an essential fatty acid necessary for many biochemical, cellular and physiological functions in fish. However, high dietary levels of DHA increase free radical injury in sea bass (Dicentrarchus labrax) larvae muscle, even when vitamin E (α-tocopherol, α-TOH) is increased. Therefore, the inclusion of other nutrients with complementary antioxidant functions, such as vitamin C (ascorbic acid, vitC), could further contribute to prevent these lesions. The objective of the present study was to determine the effect of vitC inclusion (3,600 mg/kg) in high DHA (5 % DW) and α-TOH (3,000 mg/kg) microdiets (diets 5/3,000 and 5/3,000 + vitC) in comparison to a control diet (1 % DHA DW and 1,500 mg/kg of α-TOH; diet 1/1,500) on sea bass larvae growth, survival, whole body biochemical composition and thiobarbituric acid reactive substances (TBARS) content, muscle morphology, skeletal deformities and antioxidant enzymes, insulin-like growth factors (IGFs) and myosin expression (MyHC). Larvae fed diet 1/1,500 showed the best performance in terms of total length, incidence of muscular lesions and ossification degree. IGFs gene expression was elevated in 5/3,000 diet larvae, suggesting an increased muscle mitogenesis that was confirmed by the increase in the mRNA copies of MyHC. vitC effectively controlled oxidative damages in muscle, increased α-TOH larval contents and reduced TBARS content and the occurrence of skull deformities. The results of the present study showed the antioxidant synergism between vitamins E and C when high contents of DHA are included in sea bass larvae diets

    Acceptability, feasibility, drug safety, and effectiveness of a pilot mass drug administration with a single round of sulfadoxine-pyrimethamine plus primaquine and indoor residual spraying in communities with malaria transmission in Haiti, 2018

    Get PDF
    For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness

    The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry

    Get PDF
    Flatfish have the most extreme asymmetric body morphology of vertebrates. During metamorphosis, one eye migrates to the contralateral side of the skull, and this migration is accompanied by extensive craniofacial transformations and simultaneous development of lopsided body pigmentation(1-5). The evolution of this developmental and physiological innovation remains enigmatic. Comparative genomics of two flatfish and transcriptomic analyses during metamorphosis point to a role for thyroid hormone and retinoic acid signaling, as well as phototransduction pathways. We demonstrate that retinoic acid is critical in establishing asymmetric pigmentation and, via cross-talk with thyroid hormones, in modulating eye migration. The unexpected expression of the visual opsins from the phototransduction pathway in the skin translates illumination differences and generates retinoic acid gradients that underlie the generation of asymmetry. Identifying the genetic underpinning of this unique developmental process answers long-standing questions about the evolutionary origin of asymmetry, but it also provides insight into the mechanisms that control body shape in vertebrates.National Natural Science Foundation of China [31130057, 31461163005, 31530078, 31472269, 31472262, 31472273]; State 863 High Technology R&D Project of China [2012AA092203, 2012AA10A408, 2012AA10A403-2]; Education and Research of Guangdong Province [2013B090800017]; Taishan Scholar Climb Project Fund of Shandong of China; Taishan Scholar Project Fund of Shandong of China for Young Scientists; Shanghai Universities First-class Disciplines Project of Fisheries; Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning; Shanghai Municipal Science, Special Project on the Integration of Industryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/publishedVersio

    Anthroposophic therapy for chronic depression: a four-year prospective cohort study

    Get PDF
    BACKGROUND: Depressive disorders are common, cause considerable disability, and do not always respond to standard therapy (psychotherapy, antidepressants). Anthroposophic treatment for depression differs from ordinary treatment in the use of artistic and physical therapies and special medication. We studied clinical outcomes of anthroposophic therapy for depression. METHODS: 97 outpatients from 42 medical practices in Germany participated in a prospective cohort study. Patients were aged 20–69 years and were referred to anthroposophic therapies (art, eurythmy movement exercises, or rhythmical massage) or started physician-provided anthroposophic therapy (counselling, medication) for depression: depressed mood, at least two of six further depressive symptoms, minimum duration six months, Center for Epidemiological Studies Depression Scale, German version (CES-D, range 0–60 points) of at least 24 points. Outcomes were CES-D (primary outcome) and SF-36 after 3, 6, 12, 18, 24, and 48 months. Data were collected from July 1998 to March 2005. RESULTS: Median number of art/eurythmy/massage sessions was 14 (interquartile range 12–22), median therapy duration was 137 (91–212) days. All outcomes improved significantly between baseline and all subsequent follow-ups. Improvements from baseline to 12 months were: CES-D from mean (standard deviation) 34.77 (8.21) to 19.55 (13.12) (p < 0.001), SF-36 Mental Component Summary from 26.11 (7.98) to 39.15 (12.08) (p < 0.001), and SF-36 Physical Component Summary from 43.78 (9.46) to 48.79 (9.00) (p < 0.001). All these improvements were maintained until last follow-up. At 12-month follow-up and later, 52%–56% of evaluable patients (35%–42% of all patients) were improved by at least 50% of baseline CES-D scores. CES-D improved similarly in patients not using antidepressants or psychotherapy during the first six study months (55% of patients). CONCLUSION: In outpatients with chronic depression, anthroposophic therapies were followed by long-term clinical improvement. Although the pre-post design of the present study does not allow for conclusions about comparative effectiveness, study findings suggest that the anthroposophic approach, with its recourse to non-verbal and artistic exercising therapies can be useful for patients motivated for such therapies

    The oil-dispersion bath in anthroposophic medicine – an integrative review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anthroposophic medicine offers a variety of treatments, among others the oil-dispersion bath, developed in the 1930s by Werner Junge. Based on the phenomenon that oil and water do not mix and on recommendations of Rudolf Steiner, Junge developed a vortex mechanism which churns water and essential oils into a fine mist. The oil-covered droplets empty into a tub, where the patient immerses for 15–30 minutes. We review the current literature on oil-dispersion baths.</p> <p>Methods</p> <p>The following databases were searched: Medline, Pubmed, Embase, AMED and CAMbase. The search terms were 'oil-dispersion bath' and 'oil bath', and their translations in German and French. An Internet search was also performed using Google Scholar, adding the search terms 'study' and 'case report' to the search terms above. Finally, we asked several experts for gray literature not listed in the above-mentioned databases. We included only articles which met the criterion of a clinical study or case report, and excluded theoretical contributions.</p> <p>Results</p> <p>Among several articles found in books, journals and other publications, we identified 1 prospective clinical study, 3 experimental studies (enrolling healthy individuals), 5 case reports, and 3 field-reports. In almost all cases, the studies described beneficial effects – although the methodological quality of most studies was weak. Main indications were internal/metabolic diseases and psychiatric/neurological disorders.</p> <p>Conclusion</p> <p>Beyond the obvious beneficial effects of warm bathes on the subjective well-being, it remains to be clarified what the unique contribution of the distinct essential oils dispersed in the water can be. There is a lack of clinical studies exploring the efficacy of oil-dispersion baths. Such studies are recommended for the future.</p

    Genetic Dissection of Strain Dependent Paraquat-induced Neurodegeneration in the Substantia Nigra Pars Compacta

    Get PDF
    The etiology of the vast majority of Parkinson's disease (PD) cases is unknown. It is generally accepted that there is an interaction between exposures to environmental agents with underlying genetic sensitivity. Recent epidemiological studies have shown that people living in agricultural communities have an increased risk of PD. Within these communities, paraquat (PQ) is one of the most utilized herbicides. PQ acts as a direct redox cycling agent to induce formation of free radicals and when administered to mice induces the cardinal symptoms of parkinsonism, including loss of TH+-positive dopaminergic (DA) neurons in the ventral midbrain's substantia nigra pars compacta (SNpc). Here we show that PQ-induced SNpc neuron loss is highly dependent on genetic background: C57BL/6J mice rapidly lose ∼50% of their SNpc DA neurons, whereas inbred Swiss-Webster (SWR/J) mice do not show any significant loss. We intercrossed these two strains to map quantitative trait loci (QTLs) that underlie PQ-induced SNpc neuron loss. Using genome-wide linkage analysis we detected two significant QTLs. The first is located on chromosome 5 (Chr 5) centered near D5Mit338, whereas the second is on Chr 14 centered near D14Mit206. These two QTLs map to different loci than a previously identified QTL (Mptp1) that controls a significant portion of strain sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that the mechanism of action of these two parkinsonian neurotoxins are different

    Alcohol Exposure Decreases CREB Binding Protein Expression and Histone Acetylation in the Developing Cerebellum

    Get PDF
    Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3(rd) trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol-treated rats.These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders

    Methylphenidate Exposure Induces Dopamine Neuron Loss and Activation of Microglia in the Basal Ganglia of Mice

    Get PDF
    Background: Methylphenidate (MPH) is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a ‘‘cognitive enhancer’ ’ and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. Methodology/Principal Findings: Through the use of stereological counting methods, we observed a significant reduction (,20%) in dopamine neuron numbers in the substantia nigra pars compacta (SNpc) following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Unbiased gene screening employing Affymetrix GeneChipH HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN) of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigr
    • …
    corecore