315 research outputs found
Coherent information analysis of quantum channels in simple quantum systems
The coherent information concept is used to analyze a variety of simple
quantum systems. Coherent information was calculated for the information decay
in a two-level atom in the presence of an external resonant field, for the
information exchange between two coupled two-level atoms, and for the
information transfer from a two-level atom to another atom and to a photon
field. The coherent information is shown to be equal to zero for all
full-measurement procedures, but it completely retains its original value for
quantum duplication. Transmission of information from one open subsystem to
another one in the entire closed system is analyzed to learn quantum
information about the forbidden atomic transition via a dipole active
transition of the same atom. It is argued that coherent information can be used
effectively to quantify the information channels in physical systems where
quantum coherence plays an important role.Comment: 24 pages, 7 figs; Final versiob after minor changes, title changed;
to be published in Phys. Rev. A, September 200
Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories
Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management
Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory
On the basis of a thorough discussion of the Batalin-Vilkovisky formalism for
classical field theory presented in our previous publication, we construct in
this paper the Batalin-Vilkovisky complex in perturbatively renormalized
quantum field theory. The crucial technical ingredient is a proof that the
renormalized time-ordered product is equivalent to the pointwise product of
classical field theory. The renormalized Batalin-Vilkovisky algebra is then the
classical algebra but written in terms of the time-ordered product, together
with an operator which replaces the ill defined graded Laplacian of the
unrenormalized theory. We identify it with the anomaly term of the anomalous
Master Ward Identity of Brennecke and D\"utsch. Contrary to other approaches we
do not refer to the path integral formalism and do not need to use
regularizations in intermediate steps.Comment: 34 page
Single-top Wt-channel production matched with parton showers using the POWHEG method
We present results for the next-to-leading order calculation of single-top
Wt-channel production interfaced to Shower Monte Carlo programs, implemented
according to the POWHEG method. A comparison with MC@NLO is carried out.
Results obtained using the PYTHIA shower are also shown and the effect of
typical cuts is briefly discussed.Comment: 23 pages, 9 figure
Applications and efficiencies of the first cat 63K DNA array
The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array\u2019s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50\u20131,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations
A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be â„3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poissonâs ratio, P- and S-wave velocities, Youngâs modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
New insights into the genetic etiology of Alzheimer's disease and related dementias.
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
Track E Implementation Science, Health Systems and Economics
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd
Measurement of the cross section for isolated-photon plus jet production in pp collisions at âs=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in protonâproton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fbâ1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photonâjet invariant mass and the scattering angle in the photonâjet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at âs = 13 TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (ÏttÂŻ) with a data sample of 3.2 fbâ1 of protonâproton collisions at a centre-of-mass energy of âs = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electronâmuon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously ÏttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:
ÏttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,
where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
- âŠ