64 research outputs found
Synapse at CAp 2017 NER challenge: Fasttext CRF
We present our system for the CAp 2017 NER challenge which is about named
entity recognition on French tweets. Our system leverages unsupervised learning
on a larger dataset of French tweets to learn features feeding a CRF model. It
was ranked first without using any gazetteer or structured external data, with
an F-measure of 58.89\%. To the best of our knowledge, it is the first system
to use fasttext embeddings (which include subword representations) and an
embedding-based sentence representation for NER
Recommended from our members
Altering phytoplankton growth rates changes their value as food for microzooplankton grazers
When microzooplankton graze phytoplankton prey, the consumed carbon is partitioned into particulates, dissolved organic carbon (DOC), and CO2. Allocation of prey carbon to these various fates has important consequences for marine ecosystem function. A 2-stage continuous culture system was used to investigate carbon allocation by microzooplankton consuming phytoplankton grown in chemostats at controlled, nutrient-limited growth rates. The chemical composition of Dunaliella tertiolecta and Thalassiosira pseudonana cells varied with growth rate. When a constant amount of prey carbon was fed to the dinoflagellate Oxyrrhis marina, the carbon transfer efficiency to particulates (CTE) decreased from 27 +/- 5% when fast-growing T. pseudonana cells were the prey to only 3 +/- 2% when slow-growing cells were the prey. DOC did not increase with decreasing CTE, indicating that an increase in CO2 remineralization caused the lower CTE when the slow-growing cells were consumed. A similar pattern was observed when D. tertiolecta was the prey, but CTE was higher: 42 +/- 15% for fast-growing cells, declining to 17 +/- 6% for slow-growing prey cells. The microzooplankter showed greater neutral lipid accumulation when fed D. tertiolecta; however, its neutral lipid content did not necessarily mirror that of its phytoplankton prey and varied substantially across treatments. These findings demonstrate that microzooplankton respond strongly to food qualities of prey cells that are influenced by growth rate. We conclude that a significant and variable portion of primary production is lost from ecosystems because microzooplankton CTE is strongly influenced by the impacts of nutrient limitation on prey growth rates
Recommended from our members
Advancing interpretations of ¹⁴C-uptake measurements in the context of phytoplankton physiology and ecology
The ¹⁴C-uptake method is the most common approach employed for estimating primary production in the ocean. Normalizing ¹⁴C-uptake to chlorophyll a and time yields a value termed the assimilation number, which is thought to reflect phytoplankton physiology. It is often assumed that the measured rate of ¹⁴C-uptake is between net and gross primary production, depending on the time scale of the incubation. Recent studies employing multiple oxygen and carbon isotopic methods to measure photosynthesis of phytoplankton grown over a range of steady-state division rates have provided mechanistic insights on the relationship between ¹⁴C-uptake and gross-to-net primary production. Results from these studies show that short-term (<12 h) “photosynthesis-irradiance” measurements are not a reliable means of estimating net production, gross production or nutrient limitation, but can provide important information on the photoacclimation state of the phytoplankton. Long-term (24 h) incubations yield assimilation numbers that are in good agreement with net production rates, but are independent of nutrient-limited division rates. Despite complications in interpreting ¹⁴C-uptake data, we suggest that these measurements are important for understanding phytoplankton physiology and carbon cycles while, at the same time, efforts are needed to establish new incubation-free methods for measuring phytoplankton division rate and biomass.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by Oxford University Press. All rights reserved. For permissions, please email: [email protected]. The published article can be found at: http://plankt.oxfordjournals.org/Keywords: primary production, gross production, ¹⁴C metho
The Seasonal Flux and Fate of Dissolved Organic Carbon Through Bacterioplankton in the Western North Atlantic
The oceans teem with heterotrophic bacterioplankton that play an appreciable role in the uptake of dissolved organic carbon (DOC) derived from phytoplankton net primary production (NPP). As such, bacterioplankton carbon demand (BCD), or gross heterotrophic production, represents a major carbon pathway that influences the seasonal accumulation of DOC in the surface ocean and, subsequently, the potential vertical or horizontal export of seasonally accumulated DOC. Here, we examine the contributions of bacterioplankton and DOM to ecological and biogeochemical carbon flow pathways, including those of the microbial loop and the biological carbon pump, in the Western North Atlantic Ocean (∼39–54°N along ∼40°W) over a composite annual phytoplankton bloom cycle. Combining field observations with data collected from corresponding DOC remineralization experiments, we estimate the efficiency at which bacterioplankton utilize DOC, demonstrate seasonality in the fraction of NPP that supports BCD, and provide evidence for shifts in the bioavailability and persistence of the seasonally accumulated DOC. Our results indicate that while the portion of DOC flux through bacterioplankton relative to NPP increased as seasons transitioned from high to low productivity, there was a fraction of the DOM production that accumulated and persisted. This persistent DOM is potentially an important pool of organic carbon available for export to the deep ocean via convective mixing, thus representing an important export term of the biological carbon pump
Recommended from our members
Pelagibacter metabolism of diatom-derived volatile organic compounds imposes an energetic tax on photosynthetic carbon fixation
Photosynthetic diatoms and marine bacteria contribute about one third of the net primary production in marine environments. Understanding the interactions between these two organisms is potentially important to the over all flow of carbon in the marine ecosystem
Recommended from our members
Improbability mapping: a metric for satellite-detection of submarine volcanic eruptions
Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed to separate the optical effects of volcanic products from the response of the marine algal community. It is possible to calculate an index, which maps the magnitude of improbable change (relative to long term average conditions) following known volcanic eruptions by using low resolution, initial estimates of chlorophyll and backscatter along with an archived history of satellite data. We apply multivariate probability analysis to changes in global satellite ocean chlorophyll and particulate backscatter data to create a new metric for observing apparent biological responses to submarine eruptions. Several examples are shown, illustrating the sensitivity of our improbability mapping index to known submarine volcanic events, yielding a potentially robust method for the detection of new events in remote locations.Keywords: Improbability mapping index, Submarine volcanic eruptions, Satellite detectio
The Seasonal Flux and Fate of Dissolved Organic Carbon Through Bacterioplankton in the Western North Atlantic
The oceans teem with heterotrophic bacterioplankton that play an appreciable role in the uptake of dissolved organic carbon (DOC) derived from phytoplankton net primary production (NPP). As such, bacterioplankton carbon demand (BCD), or gross heterotrophic production, represents a major carbon pathway that influences the seasonal accumulation of DOC in the surface ocean and, subsequently, the potential vertical or horizontal export of seasonally accumulated DOC. Here, we examine the contributions of bacterioplankton and DOM to ecological and biogeochemical carbon flow pathways, including those of the microbial loop and the biological carbon pump, in the Western North Atlantic Ocean (∼39–54°N along ∼40°W) over a composite annual phytoplankton bloom cycle. Combining field observations with data collected from corresponding DOC remineralization experiments, we estimate the efficiency at which bacterioplankton utilize DOC, demonstrate seasonality in the fraction of NPP that supports BCD, and provide evidence for shifts in the bioavailability and persistence of the seasonally accumulated DOC. Our results indicate that while the portion of DOC flux through bacterioplankton relative to NPP increased as seasons transitioned from high to low productivity, there was a fraction of the DOM production that accumulated and persisted. This persistent DOM is potentially an important pool of organic carbon available for export to the deep ocean via convective mixing, thus representing an important export term of the biological carbon pump
Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations
Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down
Temperate infection in a virus–host system previously known for virulent dynamics
The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus–host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host–virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host–virus densities
Single-Turnover Variable Chlorophyll Fluorescence as a Tool for Assessing Phytoplankton Photosynthesis and Primary Productivity: Opportunities, Caveats and Recommendations
Phytoplankton photosynthetic physiology can be investigated through single-turnover variable chlorophyll fluorescence (ST-ChlF) approaches, which carry unique potential to autonomously collect data at high spatial and temporal resolution. Over the past decades, significant progress has been made in the development and application of ST-ChlF methods in aquatic ecosystems, and in the interpretation of the resulting observations. At the same time, however, an increasing number of sensor types, sampling protocols, and data processing algorithms have created confusion and uncertainty among potential users, with a growing divergence of practice among different research groups. In this review, we assist the existing and upcoming user community by providing an overview of current approaches and consensus recommendations for the use of ST-ChlF measurements to examine in-situ phytoplankton productivity and photo-physiology. We argue that a consistency of practice and adherence to basic operational and quality control standards is critical to ensuring data inter-comparability. Large datasets of inter-comparable and globally coherent ST-ChlF observations hold the potential to reveal large-scale patterns and trends in phytoplankton photo-physiology, photosynthetic rates and bottom-up controls on primary productivity. As such, they hold great potential to provide invaluable physiological observations on the scales relevant for the development and validation of ecosystem models and remote sensing algorithms
- …