30 research outputs found

    The epidemiology and transmissibility of Zika virus in Girardot and San Andres Island, Colombia, September 2015 to January 2016

    Get PDF
    Transmission of Zika virus (ZIKV) was first detected in Colombia in September 2015. As of April 2016, Colombia had reported over 65,000 cases of Zika virus disease (ZVD). We analysed daily surveillance data of ZVD cases reported to the health authorities of San Andres and Girardot, Colombia, between September 2015 and January 2016. ZVD was laboratory-confirmed by reverse transcription-polymerase chain reaction (RT-PCR) in the serum of acute cases within five days of symptom onset. We use daily incidence data to estimate the basic reproductive number (R0) in each population. We identified 928 and 1,936 reported ZVD cases from San Andres and Girardot, respectively. The overall attack rate for reported ZVD was 12.13 cases per 1,000 residents of San Andres and 18.43 cases per 1,000 residents of Girardot. Attack rates were significantly higher in females in both municipalities (p < 0.001). Cases occurred in all age groups with highest rates in 20 to 49 year-olds. The estimated R0 for the Zika outbreak was 1.41 (95% confidence interval (CI): 1.15-1.74) in San Andres and 4.61 (95% CI: 4.11-5.16) in Girardot. Transmission of ZIKV is ongoing in the Americas. The estimated R0 from Colombia supports the observed rapid spread

    Retention in care for type 2 diabetes management in Sub‐Saharan Africa: A systematic review

    Get PDF
    Objective: Diabetes prevalence has risen rapidly in Sub-Saharan Africa, but rates of retention in diabetes care are poorly understood. We conducted a systematic review and meta-analysis to determine rates of retention in care of persons with type 2 diabetes. Methods: We searched MEDLINE, Global Health and CINAHL online databases for cohort studies and randomised control trials (RCTs) published up to 12 October 2021, that reported retention in or attrition from care for patients with type 2 diabetes in Sub-Saharan Africa. Retention was defined as persons diagnosed with diabetes who were alive and in care or with a known outcome, while attrition was defined as loss from care. Results: From 6559 articles identified, after title and abstract screening, 209 articles underwent full text review. Forty six papers met the inclusion criteria, comprising 22,610 participants. Twenty one articles were of RCTs of which 8 trials had 1 year or more of follow-up and 25 articles were of non-randomised studies of which 19 had 12 months or more of follow-up. A total of 11 studies (5 RCTs and 6 non-randomised) were assessed to be of good quality. Sixteen RCTs were done in secondary or tertiary care settings. Their pooled retention rate (95% CI) was 80% (77%, 84%) in the control arm. Four RCTs had been done in primary care settings and their pooled retention rate (95% CI) was 53% (45%, 62%) in the control arm. The setting of one trial was unclear. For non-randomised studies, retention rates (95% CI) were 68% (62%, 75%) among 19 studies done in secondary and tertiary care settings, and 40% (33%, 49%) among the 6 studies done in primary care settings. Conclusion: Rates of retention in care of people living with diabetes are poor in primary care research settings

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Estimating the impact of COVID-19 vaccine inequities: a modeling study

    No full text
    Abstract Access to COVID-19 vaccines on the global scale has been drastically hindered by structural socio-economic disparities. Here, we develop a data-driven, age-stratified epidemic model to evaluate the effects of COVID-19 vaccine inequities in twenty lower middle and low income countries (LMIC) selected from all WHO regions. We investigate and quantify the potential effects of higher or earlier doses availability. In doing so, we focus on the crucial initial months of vaccine distribution and administration, exploring counterfactual scenarios where we assume the same per capita daily vaccination rate reported in selected high income countries. We estimate that more than 50% of deaths (min-max range: [54−94%]) that occurred in the analyzed countries could have been averted. We further consider scenarios where LMIC had similarly early access to vaccine doses as high income countries. Even without increasing the number of doses, we estimate an important fraction of deaths (min-max range: [6−50%]) could have been averted. In the absence of the availability of high-income countries, the model suggests that additional non-pharmaceutical interventions inducing a considerable relative decrease of transmissibility (min-max range: [15−70%]) would have been required to offset the lack of vaccines. Overall, our results quantify the negative impacts of vaccine inequities and underscore the need for intensified global efforts devoted to provide faster access to vaccine programs in low and lower-middle-income countries

    Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis

    No full text
    Among the three countries most affected by the Ebola virus disease outbreak in 2014-2015, Guinea presents an unusual spatiotemporal epidemic pattern, with several waves and a long tail in the decay of the epidemic incidence

    Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015–2016 ZIKV epidemic

    Get PDF
    Abstract Background Local mosquito-borne Zika virus (ZIKV) transmission has been reported in two counties in the contiguous United States (US), prompting the issuance of travel, prevention, and testing guidance across the contiguous US. Large uncertainty, however, surrounds the quantification of the actual risk of ZIKV introduction and autochthonous transmission across different areas of the US. Methods We present a framework for the projection of ZIKV autochthonous transmission in the contiguous US during the 2015–2016 epidemic using a data-driven stochastic and spatial epidemic model accounting for seasonal, environmental, and detailed population data. The model generates an ensemble of travel-related case counts and simulates their potential to have triggered local transmission at the individual level in the 2015–2016 ZIKV epidemic. Results We estimate the risk of ZIKV introduction and local transmission at the county level and at the 0.025° × 0.025° cell level across the contiguous US. We provide a risk measure based on the probability of observing local transmission in a specific location during a ZIKV epidemic modeled after the epidemic observed during the years 2015–2016. The high spatial and temporal resolution of the model allows us to generate statistical estimates of the number of ZIKV introductions leading to local transmission in each location. We find that the risk was spatially heterogeneously distributed and concentrated in a few specific areas that account for less than 1% of the contiguous US population. Locations in Texas and Florida that have actually experienced local ZIKV transmission were among the places at highest risk according to our results. We also provide an analysis of the key determinants for local transmission and identify the key introduction routes and their contributions to ZIKV transmission in the contiguous US. Conclusions This framework provides quantitative risk estimates, fully captures the stochasticity of ZIKV introduction events, and is not biased by the under-ascertainment of cases due to asymptomatic cases. It provides general information on key risk determinants and data with potential uses in defining public health recommendations and guidance about ZIKV risk in the US

    Spread of Zika virus in the Americas

    No full text
    We use a data-driven global stochastic epidemic model to analyze the spread of the Zika virus (ZIKV) in the Americas. The model has high spatial and temporal resolution and integrates real-world demographic, human mobility, socioeconomic, temperature, and vector density data. We estimate that the first introduction of ZIKV to Brazil likely occurred between August 2013 and April 2014 (90% credible interval). We provide simulated epidemic profiles of incident ZIKV infections for several countries in the Americas through February 2017. The ZIKV epidemic is characterized by slow growth and high spatial and seasonal heterogeneity, attributable to the dynamics of the mosquito vector and to the characteristics and mobility of the human populations. We project the expected timing and number of pregnancies infected with ZIKV during the first trimester and provide estimates of microcephaly cases assuming different levels of risk as reported in empirical retrospective studies. Our approach represents a modeling effort aimed at understanding the potential magnitude and timing of the ZIKV epidemic and it can be potentially used as a template for the analysis of future mosquito-borne epidemics
    corecore