1,497 research outputs found

    Representations of the SU(N)SU(N) TT-algebra and the loop representation in 1+11+1-dimensions

    Full text link
    We consider the phase-space of Yang-Mills on a cylindrical space-time (S1×RS^1 \times {\bf R}) and the associated algebra of gauge-invariant functions, the TT-variables. We solve the Mandelstam identities both classically and quantum-mechanically by considering the TT-variables as functions of the eigenvalues of the holonomy and their associated momenta. It is shown that there are two inequivalent representations of the quantum TT-algebra. Then we compare this reduced phase space approach to Dirac quantization and find it to give essentially equivalent results. We proceed to define a loop representation in each of these two cases. One of these loop representations (for N=2N=2) is more or less equivalent to the usual loop representation.Comment: 15 pages, LaTeX, 1 postscript figure included, uses epsf.sty, G\"oteborg ITP 93-3

    DQSOps: Data Quality Scoring Operations Framework for Data-Driven Applications

    Full text link
    Data quality assessment has become a prominent component in the successful execution of complex data-driven artificial intelligence (AI) software systems. In practice, real-world applications generate huge volumes of data at speeds. These data streams require analysis and preprocessing before being permanently stored or used in a learning task. Therefore, significant attention has been paid to the systematic management and construction of high-quality datasets. Nevertheless, managing voluminous and high-velocity data streams is usually performed manually (i.e. offline), making it an impractical strategy in production environments. To address this challenge, DataOps has emerged to achieve life-cycle automation of data processes using DevOps principles. However, determining the data quality based on a fitness scale constitutes a complex task within the framework of DataOps. This paper presents a novel Data Quality Scoring Operations (DQSOps) framework that yields a quality score for production data in DataOps workflows. The framework incorporates two scoring approaches, an ML prediction-based approach that predicts the data quality score and a standard-based approach that periodically produces the ground-truth scores based on assessing several data quality dimensions. We deploy the DQSOps framework in a real-world industrial use case. The results show that DQSOps achieves significant computational speedup rates compared to the conventional approach of data quality scoring while maintaining high prediction performance.Comment: 10 Pages The International Conference on Evaluation and Assessment in Software Engineering (EASE) conferenc

    Quality Assurance in MLOps Setting: An Industrial Perspective

    Full text link
    Today, machine learning (ML) is widely used in industry to provide the core functionality of production systems. However, it is practically always used in production systems as part of a larger end-to-end software system that is made up of several other components in addition to the ML model. Due to production demand and time constraints, automated software engineering practices are highly applicable. The increased use of automated ML software engineering practices in industries such as manufacturing and utilities requires an automated Quality Assurance (QA) approach as an integral part of ML software. Here, QA helps reduce risk by offering an objective perspective on the software task. Although conventional software engineering has automated tools for QA data analysis for data-driven ML, the use of QA practices for ML in operation (MLOps) is lacking. This paper examines the QA challenges that arise in industrial MLOps and conceptualizes modular strategies to deal with data integrity and Data Quality (DQ). The paper is accompanied by real industrial use-cases from industrial partners. The paper also presents several challenges that may serve as a basis for future studies.Comment: Accepted in ISE2022 of the 29th Asia-Pacific Software Engineering Conference (APSEC 2022

    Up and Out: Journalism, Social Media, and Historical Sensibility

    Get PDF
    Much of the modern theorizing about journalism and communication attained its robustness due to a powerful convergence of distinct middle-range scholarly findings that emerged primarily in the 1970s and 1980s. In the present day, when we turn our analytical gaze to the relationship between journalism and social media, we thus need to strike a delicate balance between conducting new qualitative research, re-conceptualizing and re-interrogating the classic conclusions of political communication scholarship, and linking these two aspects of research together. However, we might also wish to extend our analytical gaze “out,” interrogating the movement of journalistic technology across history, as well as “up,” looking at how journalism fits within larger structural explanations regarding the shape of political life

    Comparing international coverage of 9/11 : towards an interdisciplinary explanation of the construction of news

    Get PDF
    This article presents an interdisciplinary model attempting to explain how news is constructed by relying on the contributions of different fields of study: News Sociology, Political Communications, International Communications, International Relations. It is a first step towards developing a holistic theoretical approach to what shapes the news, which bridges current micro to macro approaches. More precisely the model explains news variation across different media organization and countries by focusing on the different way the sense of newsworthiness of journalists is affected by three main variables: national interest, national journalistic culture, and editorial policy of each media organization. The model is developed on the basis of an investigation into what shaped the media coverage of 9/11 in eight elite newspapers across the US, France, Italy and Pakistan

    Comment on ``Evidence for Narrow Baryon Resonances in Inelastic pp Scattering''

    Get PDF
    Compton scattering data are sensitive to the existence of low-mass resonances reported by Tatischeff et al. We show that such states, with their reported properties, are excluded by previous Compton scattering experiments.Comment: One page, submitted to PR

    Designing visual management in manufacturing from a user perspective

    Get PDF
    Many organisations use daily meetings, whiteboards and an information system for employee intra-communication. While Operation Management research is often management centred, Human Centred Design, instead, takes a user’s perspective. This research aims to reflect upon and describe a method, applied in practice in a double case study within manufacturing, on how to (re-)design meetings and visual management boards, and what type of information and key performance indicators are most relevant for the personnel. The paper proposes a lean Kata-improvement inspired design method, which takes the personnel’s perspective on design of daily visual management

    Scheduling science on television: A comparative analysis of the representations of science in 11 European countries

    Get PDF
    While science-in-the-media is a useful vehicle for understanding the media, few scholars have used it that way: instead, they look at science-in-the-media as a way of understanding science-in-the-media and often end up attributing characteristics to science-in-the-media that are simply characteristics of the media, rather than of the science they see there. This point of view was argued by Jane Gregory and Steve Miller in 1998 in Science in Public. Science, they concluded, is not a special case in the mass media, understanding science-in-the-media is mostly about understanding the media (Gregory and Miller, 1998: 105). More than a decade later, research that looks for patterns or even determinants of science-in-the-media, be it in press or electronic media, is still very rare. There is interest in explaining the media’s selection of science content from a media perspective. Instead, the search for, and analysis of, several kinds of distortions in media representations of science have been leading topics of science-in-the-media research since its beginning in the USA at the end of the 1960s and remain influential today (see Lewenstein, 1994; Weigold, 2001; Kohring, 2005 for summaries). Only a relatively small amount of research has been conducted seeking to identify factors relevant to understanding how science is treated by the mass media in general and by television in particular. The current study addresses the lack of research in this area. Our research seeks to explore which constraints national media systems place on the volume and structure of science programming in television. In simpler terms, the main question this study is trying to address is why science-in-TV in Europe appears as it does. We seek to link research focussing on the detailed analysis of science representations on television (Silverstone, 1984; Collins, 1987; Hornig, 1990; Leon, 2008), and media research focussing on the historical genesis and current political regulation of national media systems (see for instance Hallin and Mancini, 2004; Napoli, 2004; Open Society Institute, 2005, 2008). The former studies provide deeper insights into the selection and reconstruction of scientific subject matters, which reflect and – at the same time – reinforce popular images of science. But their studies do not give much attention to production constraints or other relevant factors which could provide an insight into why media treat science as they do. The latter scholars inter alia shed light on distinct media policies in Europe which significantly influence national channel patterns. However, they do not refer to clearly defined content categories but to fairly rough distinctions such as information versus entertainment or fictional versus factual. Accordingly, we know more about historical roots and current practices of media regulation across Europe than we do about the effects of these different regimes on the provision of specific content in European societies

    The uses and functions of ageing celebrity war reporters

    Get PDF
    This article starts from the premise that recognition of professional authority and celebrity status depends on the embodiment and performance of field-specific dispositional practices: there’s no such thing as a natural, though we often talk about journalistic instinct as something someone simply has or doesn’t have. Next, we have little control over how we are perceived by peers and publics, and what we think are active positioning or subjectifying practices are in fact, after Bourdieu, revelations of already-determined delegation. The upshot is that two journalists can arrive at diametrically opposed judgements on the basis of observation of the same actions of a colleague, and as individuals we are blithely hypocritical in forming (or reciting) evaluations of the professional identity of celebrities. Nowhere is this starker than in the discourse of age-appropriate behaviour, which this paper addresses using the examples of ‘star’ war reporters John Simpson, Kate Adie and Martin Bell. A certain rough-around-the-edges irreverence is central to dispositional authenticity amongst war correspondents, and for ageing hacks this incorporates gendered attitudes to sex and alcohol as well as indifference to protocol. And yet perceived age-inappropriate sexual behaviour is also used to undermine professional integrity, and the paper ends by outlining the phenomenological context that makes possible this effortless switching between amoral and moralising recognition by peers and audiences alike

    Loop Variables for compact two-dimensional quantum electrodynamics

    Get PDF
    Variables parametrized by closed and open curves are defined to reformulate compact U(1) Quantum Electrodynamics in the circle with a massless fermion field. It is found that the gauge invariant nature of these variables accommodates into a regularization scheme for the Hamiltonian and current operators that is specially well suited for the study of the compact case. The zero mode energy spectrum, the value of the axial anomaly and the anomalous commutators this model presents are hence determined in a manifestly gauge invariant manner. Contrary to the non compact case, the zero mode spectrum is not equally spaced and consequently the theory does not lead to the spectrum of a free scalar boson. All the states are invariant under large gauge transformations. In particular, that is the case for the vacuum, and consequently the θ\theta-dependence does not appear.Comment: 24 pages, 1 figure, to be published in Phys. Rev.
    corecore